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CHAPTER 5 
SSC MODEL: OVERVIEW AND METHODOLOGY 

5.1 Overview of Spatial and Temporal Models 

The heart of any SSC model for PSHA is a description of the future spatial and temporal 
distribution of earthquakes. The earliest PSHA models identified seismic source zones within 
which the spatial distribution of earthquakes was assumed to be uniform. The temporal 
distribution of earthquakes was assumed to follow a Poisson process, and the sizes of 
earthquakes within the zones were assumed to follow an exponential distribution. In more 
tectonically active areas such as the WUS, the recognition of active faults allowed the spatial 
models to evolve such that they were able to include the fault sources as well as the background 
source zones within which they lie. Further, the development of fault-specific paleoseismic data 
regarding the timing, amount of slip per earthquake, and geologic slip rate provided a new class 
of temporal models that could use this information directly in the PSHA.  

In the meantime, the evolution of spatial and temporal models within stable continental regions 
(SCRs) such as the CEUS has taken place differently and more slowly. Despite continued 
geologic investigations, the search for the causative faults giving rise to observed seismicity has 
yielded very few cases where a definitive argument can be made for having identified an active 
fault in the sense that this is commonly identified in the WUS. With notable exceptions such as 
the Meers fault and the Cheraw fault, the best-defined cases of localized seismicity and 
deformation occur in the New Madrid region, where individual fault-like sources can be called 
out and characterized. Even in locales such as Charleston, where geologic and geophysical 
studies have continued over the decades, uncertainties persist regarding the unique association of 
the observed historical seismicity and the one or more causative faults that are responsible.  

5.1.1 Spatial Model Considerations 

Continued analysis of the historical seismicity record and network monitoring by regional and 
local seismic networks has led to acceptance within the community that the general spatial 
patterns of observed small-to-moderate magnitude earthquakes provide predictive information 
about the spatial distribution of future large-magnitude earthquakes. The analyses leading to this 
conclusion have focused on whether the observed patterns of earthquakes have varied through 
time; therefore, in effect, this is an assessment of whether small- to moderate-magnitude 
earthquakes have been relatively stationary through time. Studies such as those by Kafka (2007, 
2009) suggest that this has generally been the case and that we can with some level of confidence 
use the spatial pattern of smaller earthquakes to predict the future pattern of smaller earthquakes. 
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However, the available data on larger-magnitude earthquakes and their relationship to the spatial 
distribution of smaller earthquakes based on the observed record is quite limited and not 
sufficient to allow an empirical spatial model to arrive at such a conclusion with confidence. We 
have some cases like Charlevoix and New Madrid where a spatial concentration of smaller-
magnitude earthquakes is occurring generally within the region of larger historical earthquakes. 
However, we also have counter-examples like the Eastern Tennessee seismic zone, which is 
defined by a highly concentrated zone of small to moderate earthquakes without any larger 
events in the historical record. Likewise, the Charleston region is associated with a pattern of 
observed seismicity that is not particularly remarkable for drawing attention to the location of the 
1886 earthquake. 

Perhaps the most dramatic finding in recent years is paleoseismic evidence for the occurrence of 
prehistoric large-magnitude earthquakes in the CEUS. For obvious reasons, the earliest 
paleoseismic studies occurred in the locales of large historical earthquakes (e.g., New Madrid, 
Charleston), and subsequent studies moved to other regions (e.g., Wabash Valley, Charlevoix, 
Eastern Tennessee). With a few exceptions, the paleoseismic information developed at these 
locations appears to be related to secondary shaking effects such as liquefaction rather than 
observed fault displacements. As a result, uncertainties exist about both the locations and sizes of 
the earthquakes. Detailed studies of historical and instrumental earthquakes, and liquefaction 
phenomena associated with them, coupled with field and laboratory studies of geotechnical 
properties, are leading to a stronger technical basis for placing limits on the locations of 
paleoearthquakes interpreted by the distribution of liquefaction phenomena and for defining their 
magnitudes. In some cases, the paleoseismic evidence for repeated large-magnitude earthquakes 
is so compelling that the TI Team has concluded that a RLME source must be included in the 
SSC model. In other cases, there is suggestive evidence of potential liquefaction earthquakes, 
such as the postulated Alabama-Louisiana-Mississippi (ALM) zone. In that situation, 
consideration is given to possible evidence for a prehistoric earthquake, but inclusion as an 
RLME source is not warranted (see Section 7.3.9 for a discussion). The establishment of several 
RLME sources as spatial components of the CEUS SSC model is an important advancement over 
previous studies and reflects the evolution taking place within the technical community. 

Notwithstanding the locations of RLME sources, the spatial distribution of distributed seismicity 
sources has advanced in PSHA based largely on the assumption of spatial stationarity, as 
discussed in Section 5.3.2.1 of this report. For example, the EPRI-SOG project and the U.S. 
National Seismic Hazard Mapping Project (Petersen et al., 2008) use different approaches to 
“smooth” observed seismicity to provide a map that expresses the future spatial pattern of 
seismicity. In reality, the a-values, or rates per unit area, and b-values are subject to the 
smoothing operation, and various calculation approaches are carried out. Because of the support 
in the community for these approaches to representing the future spatial distribution of 
seismicity, they have been explored thoroughly as part of the CEUS SSC Project. Various 
adaptive kernels were evaluated along with the penalized maximum-likelihood approach that is a 
refinement of the approach used in the EPRI-SOG project. The refined approach subdivides the 
region into one-quarter-degree cells and specifies the degree of “communication” between 
adjacent cells. As discussed in Section 5.3.1, the approach was selected because, although it is 
based on the same conceptual model of spatial stationarity as the kernel approach, it offers the 



 
Chapter 5 

SSC Model: Overview and Methodology 

5-3 

ability to allow for spatial variability in both a- and b-values, and it was found to provide 
comparable results to the adaptive kernel when a constant b-value was assumed.  

5.1.2 Considerations Regarding Temporal Models 

For purposes of SSC model assessments, the “temporal” issue concerns both the sizes of future 
earthquakes as well as their frequency of occurrence (average rate and aperiodicity). With time 
and study the earthquake research community in the WUS has developed information that 
suggests that the assumption of an exponential distribution of magnitudes may not be appropriate 
for individual faults. Poissonian models are memoryless and do not incorporate information 
about the timing or size of prior earthquakes. Studies of fault displacements, including the timing 
and displacement per event, and physical notions of strain accumulation and release provide 
information for modeling where a source currently resides in the seismic cycle. Such “real-time” 
and “renewal” models have found their way into some SSC model assessments where the 
dominant sources are highly active plate-boundary faults. 

In contrast to plate-boundary SSC models, the fundamental information source for the 
assessment of temporal models in the CEUS is the catalog of historical and instrumental 
earthquakes. Though uneven in coverage and incomplete back through time, the catalog is the 
cornerstone for assessing recurrence rates for most seismic sources in the CEUS. Thus, 
significant effort was devoted to developing an earthquake catalog for the CEUS SSC Project 
with moment magnitudes for all earthquakes and for analyzing its completeness as a function of 
time and location. Beyond the catalog, in the CEUS, the modeling of temporal behavior has 
benefited most from paleoseismic investigations at the RLME sources. An ever-increasing 
database of paleoliquefaction studies, which have been compiled as part of the CEUS SSC 
Project (Appendix E), provides information on the approximate sizes and timing of large-
magnitude events. In effect, these studies extend the historical observations back a few thousand 
years. Despite their uncertainties, the studies provide clues about the nature of the repeated 
pattern of larger earthquakes through time at individual seismic sources. A number of studies 
conducted within SCRs including the CEUS have concluded that large earthquakes are not 
evenly spaced in time, but rather occur as “clusters” of earthquakes that are separated from other 
clusters by long “intercluster” periods of quiescence.  

For each RLME source, the available data were evaluated in order for the TI Team to assess 
whether temporally clustered behavior has been observed and, if so, whether the source is 
currently within or outside of a temporal cluster. In either case, the temporal behavior is modeled 
as a Poisson process. The TI Team further evaluated the available data to assess whether the 
application of a renewal model would be appropriate for the RLME sources. The physical 
underpinning of a renewal model is a quasi steady state loading process applied to a fault. These 
models have been given relatively high weight in characterizing earthquake occurrences on plate 
boundary faults, even though there may not be a well-developed paleoseismic history (e.g., 
Working Group, 2003). Two of the RLME sources defined by the TI team have reasonably well-
developed paleoseismic histories: New Madrid and Charleston. However, the physical process of 
steady state loading being applied to these sources is more problematic. In addition, the specific 
causative faults associated with the New Madrid RLME sources are only moderately understood 
and the fault or faults associated with the Charleston RLME source are poorly understood. 
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Therefore, giving due consideration to the larger technical community’s views regarding 
recurrence models for these RLME sources, the TI team concluded that applying the renewal 
model to these two RLME sources should have some weight, although it is relatively low. For all 
of the other RLME sources, the available data were judged not to be sufficient to allow for the 
application of such models with any confidence. The methodology for characterizing RLME 
recurrence is given in Section 5.3.3 and the specific data and recurrence assessments related to 
the Charleston and New Madrid RLME sources are given in Sections 6.1.2 and 6.1.5, 
respectively. 

For distributed seismic source zones, the earthquake catalog provides the fundamental basis for 
assessing recurrence and, as described previously, for describing its future spatial distribution. 
Consistent with common practice in the assessment of seismicity within large seismic sources, 
the observed seismicity is assessed to follow a truncated exponential magnitude distribution (e.g. 
Cornell and Van Marke, 1969) and Poissonian behavior. 

5.1.3 Perspective on CEUS SSC Models 

At the time of the preparation of this report, there were a number of promising research areas 
pertaining to spatial and temporal models that had not reached the level where they could be 
included in the SSC model with confidence. Examples include models proposed as part of the 
ongoing debate on “characteristic” earthquakes or, simply stated, the tendency for a specific fault 
to generate earthquake magnitudes that are not exponentially distributed in magnitude. The TI 
Team reviewed this continuing dialogue within the community, but concluded that the models 
were not applicable to the kinds of sources being characterized in the CEUS. Models of fault-
specific behavior were not judged to be applicable in the CEUS unless and until seismogenic 
faults were identified and data regarding their behavior was gathered. Rather, the intent of the 
RLME sources is to model only the recurrence of repeated large earthquakes in a specific 
location. As such, the RLME sources represent a source of seismic hazard that is in addition to 
the hazard resulting from the occurrence of distributed seismicity modeled by the distributed 
seismicity sources. The addition of the RLME recurrence with that derived from observed 
seismicity within the distributed seismicity sources allows for a departure from the general 
truncated exponential recurrence behavior in specific locations. This simple approach to 
incorporating the data available in the CEUS is described in Sections 5.3.3.4 and 6.1. 

Another area of ongoing research with potential implications for recurrence behavior relates to 
geodetic strain rate measurements. No doubt, the systematic gathering of geodetic data 
throughout the CEUS for purposes of identifying and analyzing tectonic strain is crucial for the 
understanding of contemporary deformation processes. Its importance is acknowledged and its 
promise in the decades ahead is undeniable. However, in 2010, the CEUS technical community’s 
understanding of the meaning of a short-term (few decades) strain signal relative to seismic 
source characteristics is embryonic. The spatial distribution and temporal stability of such strains 
is not known, and there is no clear method for translating these strain signals into spatial and 
temporal SSC models. One need only witness the ongoing debates in the WUS on the 
discrepancies between long-term geologic slip rates and short-term geodetic strain rates to lose 
confidence that, in the complete absence of geologic slip rates, the geodetic results can be used.  
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As a corollary, the types of analyses carried out in the WUS to “test” the reasonableness of a 
seismic source model are generally not applicable in the CEUS. For example, the integrated 
moment rate derived for a region from the summed fault slip rates (derived from geologic 
studies) cannot be developed and, as a result, cannot be compared to the observed moment rate 
for the same region based on the seismicity record. Likewise, given the generally sparse geodetic 
networks and short period of observation, the uncertainties in attempting to compare the 
recurrence rates for seismic sources derived from seismicity with those developed from geodetic 
data are unacceptably large. It is acknowledged in this report that local well-studied areas such as 
the central New Madrid region may eventually provide clues or even constraints on the temporal 
behavior of seismic sources. Research in these areas is encouraged, but the current data do not 
allow for direct incorporation into the CEUS SSC model. 

5.2 Maximum Earthquake Magnitude Assessment 

This section describes the methodology that was used in the CEUS SSC Project to assess Mmax 
for all seismic sources. Estimating Mmax in SCRs such as the CEUS is highly uncertain despite 
considerable interest and effort by the scientific community over the past few decades. Mmax is 
defined as the upper truncation point of the earthquake recurrence curve for individual seismic 
sources, and the typically broad distribution for any given source reflects considerable epistemic 
uncertainty. Because the maximum magnitude for any given seismic source in the CEUS occurs 
rarely relative to the period of observation, the use of the historical seismicity record provides 
important but limited constraints on the magnitude of the maximum event. At annual frequencies 
of interest for conventional buildings (approximately 10–2 to 10–3/yr), the hazard results are 
usually not particularly sensitive to the maximum magnitude. However, at annual frequencies of 
interest for nuclear facilities (10–3 to 10-7), the influence of Mmax can be very significant. For 
this reason, focus on the Mmax issue has been driven by PSHAs conducted for nuclear facilities.  

In view of the importance of Mmax revealed by the EPRI-SOG project (EPRI, 1988), a major 
study sponsored by EPRI was carried out in the early 1990s to attempt to quantify the knowledge 
and uncertainties in Mmax for purposes of PSHA (Johnston et al., 1994). The approach 
advocated in the EPRI Mmax study is based on analogies between the CEUS and other SCR 
areas. To develop the analogies, two key activities needed to be conducted: (1) development of a 
worldwide seismicity catalog of moderate to large earthquakes with systematic moment 
magnitudes for all events, and (2) identification and characterization of the regions worldwide 
that can be considered analogous tectonically to the CEUS. The results of those efforts were the 
first of their kind and led to considerable advances in the research (e.g., Johnston, 1996a).  

The EPRI Mmax study also focused on the use of a Bayesian procedure for estimating Mmax, in 
which the prior distribution is based on the earthquake magnitudes of events that occurred 
worldwide within tectonically analogous regions. At the time the study was conducted, there was 
considerable focus on the occurrence of large earthquakes within formerly rifted or extended 
crust. For example, the 1811-1812 New Madrid earthquakes were interpreted to have occurred 
within the Reelfoot rift, which exhibits evidence of multiple episodes of extension but is 
currently within a compressive stress regime. Despite the anecdotal evidence for the occurrence 
of the largest SCR earthquakes within extended crust, the statistical analyses in Johnston et al. 
(1994) did not provide strong evidence that any particular tectonic characteristic—or 
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combination of characteristics—is correlated with maximum earthquake size. The best 
correlations at the time suggested that sites of major Paleozoic and younger extension appeared 
to have the potential for a larger Mmax (i.e., a higher mean of the prior distribution), but the 
analyses also indicated that the standard deviation of the prior distribution was larger. 

From the beginning of the CEUS SSC Project, the TI Team pursued the refinement and 
application of the Bayesian Mmax approach (Johnston et al., 1994). An evaluation of alternative 
approaches to assessing Mmax in the CEUS (Wheeler, 2009) concluded that the Bayesian Mmax 
approach, as well as other approaches that were based on tectonic analogues, was worthy of 
pursuit within the technical community. The Bayesian Mmax approach has the advantage that it 
provides a quantitative and repeatable process for assessing Mmax. The approach is described 
below in Section 5.2.1.1 along with the updates to the Johnston et al. (1994) characterization of 
Mmax for SCRs. The TI Team also explored alternative approaches for the assessment of Mmax 
that provide quantitative and repeatable results, and the team identified the approach developed 
by Kijko(2004) as a viable alternative. In his evaluation of statistical approaches for estimating 
Mmax, Wheeler (2004) noted that problems of small samples and rare large earthquakes 
continue to hinder testing of statistical models in SCRs. Nevertheless, the Kijko (2004) approach 
requires fewer assumptions than the Bayesian approach in that it uses only the observed 
earthquake statistics for the source, but this is offset by the need for a relatively larger data 
sample in order to get meaningful results. The Kijko (2004) approach is described in Section 
5.2.1.2. 

5.2.1 Approaches to Mmax Estimation in the CEUS 

The CEUS SSC model incorporates two types of seismic sources: RLME sources and 
distributed-seismicity source zones of various types. The RLME sources are characterized by 
their sizes and recurrence rates derived primarily from the paleoseismic record and, despite 
variations in the seismic source zone configurations, are assumed to always exist in the model. 
RLME sources include those in the New Madrid area, Wabash Valley, Charleston, Charlevoix, 
and Meers fault, among others. Because of the independent constraints on earthquake size, those 
constraints are used to estimate the magnitudes of RLMEs, and the assessment of Mmax 
discussed here is not applicable to RLME sources. Rather, this discussion is applicable to the 
distributed-seismicity source zones, which exist in different forms depending on whether the 
Mmax zones or the seismotectonic zones branches of the master logic tree are being followed. 

The assessment of Mmax for distributed seismicity sources (source zones) in the CEUS SSC 
Project has been designed to incorporate the uncertainties in both the conceptual models and the 
parameter values associated with each model. Based on the review and evaluation of the 
Bayesian method and consideration of other methods that exist within the larger technical 
community, it was decided that the assessment would need to include alternative conceptual 
models for Mmax. In particular, it was decided that alternative prior distributions should be 
considered for the Bayesian approach, and that an alternative to the Bayesian approach should be 
considered.  

The TI Team decided to use two alternative approaches as a basis for estimating the Mmax 
distributions for distributed seismicity sources: (1) the Bayesian procedure, which uses the prior 
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distributions from an update and evaluation of the global SCR data; and (2) the Kijko (2004) 
procedure, which uses the observed seismicity within a region to provide a direct (or posterior) 
assessment of Mmax. The Bayesian approach is representative of a category of approaches that 
rely on drawing analogies to tectonically comparable regions in order to estimate the Mmax for 
the source of interest. These approaches are based on the ergodic assumption that one can 
substitute time (the short period of observation) for space (other SCRs). The Kijko approach is 
representative of an alternative category of models that rely on the observations of seismicity 
entirely within the zone of interest. Because the occurrence of Mmax is typically rare relative to 
the period of observation, these approaches assume a particular frequency distribution of 
earthquake sizes and, to be able to apply them with confidence to larger or very active regions, 
rely on significant numbers of observed earthquakes to provide stable estimates.  

Both the Bayesian and Kijko approaches have their pros and cons. They both have the positive 
attribute that they are repeatable given the same data and that they can readily be updated given 
new information. The Bayesian approach is arguably more stable because of the use of a prior 
distribution that, even in the absence of a significant number of earthquakes in the zone of 
interest, can still provide a result. However, the prior distributions for Mmax are developed 
based on analogies to other “tectonically comparable” regions, which can be a source of 
uncertainty, and based on evaluation of those regions relative to a highly uncertain set of 
characteristics that are postulated to be important to Mmax. The advantage of the Kijko approach 
is that it does not require the identification of analogue regions or assessments of the 
characteristics of those regions. However, as applied the approach relies on the assumption that 
the distribution of earthquake magnitudes follows a doubly truncated exponential distribution. 
Moreover, the approach does not provide stable results when the number of observed 
earthquakes is low.  

From the standpoint of their specific use in the CEUS SSC model, there are other considerations 
in evaluating the two approaches. The key difference between the Kijko approach and the 
Bayesian approach is that the Kijko approach does not have a prior distribution; it uses only the 
earthquakes within the source of interest. The prior distribution is based on analogies to other 
parts of the world and the assumption that those events are applicable to the estimation of 
maximum magnitudes within the source of interest. A potential problem is that the global SCR 
database includes earthquakes from RLME sources (e.g., New Madrid, Charleston, and perhaps 
others worldwide that we suspect might have RLMEs). In the CEUS SSC model, however, the 
Bayesian approach is being applied to non-RLME sources, so we are possibly overestimating 
Mmax by using RLMEs globally to develop our prior distributions. The Kijko approach has 
some appeal because, by definition, it uses only data from the CEUS and only the earthquake 
catalog that does not include RLMEs. Care must be taken to avoid instability due to small 
numbers of earthquakes, but this can be accomplished by examining the statistics of the 
calculations, as provided for in the Kijko approach, and by giving the approach less weight when 
numbers of events are too low for stable estimates. Also, the seismic sources of interest in the 
CEUS SSC model tend to be larger regions with a significant number of earthquakes, thus 
mitigating the likelihood of instability. 
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The application of the Bayesian and Kijko approaches to assessing Mmax for the CEUS SSC 
Project is described below in Sections 5.2.1.1 and 5.2.1.2. The approach to weighting the 
alternative approaches for particular seismic sources is described in Section 5.2.1.3. 

5.2.1.1 Bayesian Mmax Approach 

The Bayesian Mmax approach is illustrated on Figure 5.2.1-1. The approach is based on 
estimating Mmax by drawing analogies to regions that are comparable to the CEUS (i.e., SCRs) 
and using that information to establish prior distributions on Mmax for distributed seismicity 
sources (source zones) in the CEUS. Part (a) of Figure 5.2.1-1 shows the prior distribution 
developed by Johnston et al. (1994) for extended continental crust. The prior distribution is then 
updated with source-specific information about the number and sizes of observed earthquakes. 
The update is expressed as a likelihood function, part (b) of Figure 5.2.1-1, which is zero for all 
values below the maximum observed magnitude, has a peak near the maximum observed, and 
then becomes essentially constant at larger magnitudes. The prior distribution is then convolved 
with the likelihood function to arrive at a posterior distribution of Mmax, shown in part (c) of the 
figure. The continuous posterior distribution is then represented by a discrete distribution for use 
in hazard analysis, as shown in part (d). 

The likelihood function used to update the prior is derived from the earthquake recurrence model 
applied to the source region. The model used in this study is an exponential distribution for the 
sizes of earthquakes occurring with a source region. This is the standard model applied to regions 
where multiple individual sources contribute to the occurrence of earthquakes. The likelihood 
function for possible values of Mmax, mu, based on the exponential model is (e.g., Johnston, 
1994) is 

 
� �� � obs

uNu

obs
u

u

mmmmb

mm
mL

�

�

�

����

�
	

max0

max

for ))(10ln(exp1

for 0
][  (5.2.1-1) 

where b is the Gutenberg-Richter b-value, N is the number of recorded earthquakes with 
magnitudes equal to or larger than a minimum value m0, and obsm �max  is the largest recorded 
earthquake. The likelihood function has two effects on the prior. The first is to truncate the lower 
tail of the prior distribution at the value of the maximum observed earthquake. The shape of the 
likelihood function is controlled by the value of N, the number of earthquakes between m0 and 

obsm �max . In most cases, the value of N is small such that the likelihood function is relatively flat 
with a small peak at mu equal to obsm �max , as shown in part (b) of Figure 5.2.1-1. As a result, the 
primary effect is to produce a posterior distribution with a similar shape to the prior, as shown in 
part (c) of Figure 5.2.1-1. When N becomes large, the likelihood function becomes very peaked 
at obsm �max  and has a major effect on the prior distribution. Figure 5.2.1-2 repeats the example of 
Figure 5.2.1-1 with the value of N increased from 2 to 10. In this case, the posterior distribution 
also becomes very peaked near obsm �max . It is important to note that the influence of size of N is 
relative to the magnitude range m0 to obsm �max . Because of the exponential distribution of 
magnitude sizes, increasing N by reducing m0 for a given value of obsm �max  has no effect on the 
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likelihood function as long as the increase in N is consistent with the b-value of the source 
region. 

Because typical applications involve small values of N, the shape of the posterior Mmax 
distribution is similar to that of the prior. Thus, specification of the prior distribution is of 
primary importance in defining the Mmax distribution. The Johnston et al. (1994) Mmax prior 
distributions were developed from a study of SCR earthquakes. The process involved 
subdividing the SCR into tectonic domains on the basis of characteristics such as crustal 
extension, crustal age, age of major deformation, state of stress, and orientation of predominant 
structural grain relative to stress. A catalog of SCR earthquakes was developed in which moment 
magnitudes were assessed for each earthquake. The SCR earthquake catalog was then used to 
assess the largest observed earthquake in each domain. The mean and standard deviation of these 
values for specified subsets of the SCR domains provided normal distributions for obsm �max . The 
last step in converting the distribution for obsm �max  into a prior distribution for mu was to make a 
bias correction to account for the fact that obsm �max  is in nearly all cases less than mu. The bias 
correction is based on the assumption that the size distribution of earthquakes in a source region 
corresponds to a truncated exponential distribution between a specified minimum magnitude m0 
and the maximum magnitude for the region, mu. Using this assumption, the cumulative 
probability distribution for the largest earthquake in a sample of size N given a specified value of 
mu is (Johnston et al., 1996): 
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Figure 5.2.1-3 shows median (50th percentile) values of obsm �max  as a function of mu and N. 
These values were used to make a bias adjustment from obsm �max  to mu by selecting a value of mu 
such that the median value of the maximum observed, obsm �maxˆ , equals the actual observed value. 
An example is illustrated on Figure 5.2.1-3 for the case in which the value of obsm �max  equal to 
5.7 for a sample size of 10 earthquakes equal to or larger than m0 of 4.5. The N = 10 curve shown 
on Figure 5.2.1-3 indicates that a mu value of 6.3 produces a value of obsm �maxˆ  equal to 5.7. Thus 
a magnitude of 6.3 represents the bias-adjusted value of mu for the source. 

The relationships shown on Figure 5.2.1-3 indicate that for a given value of N, the value of 
obsm �maxˆ  reaches an asymptotic level as mu increases. Thus it is not possible to make meaningful 

bias corrections for large values of obsm �max  unless the sample size is large. This fact led Johnston 
et al. (1994) to use domain pooling to increase the sample size. Tectonic domains that had the 
same characteristics (e.g., same type of crust, same age, same state of stress) were combined into 
a “superdomain” under the assumption that the common set of characteristics would correlate 
with a common value of mu. The mean value of obsm �max  in a set of superdomains was then bias-
adjusted to produce a mean value of mu using the average sample size in the superdomains. This 
bias adjusted value of mu along with the standard deviation of obsm �max  was used as a prior 
distribution for Mmax.  
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Given the importance of the prior distribution in most applications of the Bayesian Mmax 
approach, the CEUS SSC Project focused its efforts on development of updated prior 
distributions. This involved updating the SCR data sets and performing new statistical analyses. 

The SCR data sets used to develop the Johnston et al. (1994) Mmax prior distributions consist of 
the SCR earthquake catalog and the set of SCR domains. The SCR earthquake catalog was 
updated for this study. The principal source for this update was the catalog published by Schulte 
and Mooney (2005) that extended the SCR catalog of Johnston et al. (1994) from the end of 1990 
to the end of 2003 as well as added additional earthquakes for the earlier time period identified in 
the literature. Earthquakes occurring in SCRs for the period 2004 through 2008 were added from 
the Harvard Moment Tensor (HMT) catalog. All earthquakes were assigned moment magnitudes 
and magnitude uncertainties based on the values given in Johnston et al. (1994) and Schulte and 
Mooney (2003). These values were updated using the relationships and assessments presented in 
Johnston (1996a, 1996b) as well as data from the CEUS SSC catalog for earthquakes in the 
CEUS. Moment magnitudes from the HMT catalog were assigned a nominal uncertainty of 0.1-
magnitude unit standard deviation. Moment magnitudes for specific earthquakes, such as the 
1811-1812 New Madrid sequence and the 1886 Charleston earthquake, were assigned according 
to the current literature. Appendix K presents the updated SCR earthquake catalog. 

Updating the basis for Johnston et al.’s (1994) division of the SCR crust into 255 tectonic 
domains was beyond the scope of this project. However, the assignments of age, stress state, and 
stress structure angles to the 255 SCR domains were reviewed and updated using recent 
information. Appendix Table K-2 lists the 255 SCR domains defined by Johnston et al. (1994) 
and the updated domain characteristics defined for each. The boundaries of these domains are 
included in the Project database. 

The updated SCR catalog was then used to assess the value of obsm �max  for each domain and the 
sample size N representing the number of earthquakes � M 4.5. Following the approach of 
Johnston et al. (1994), an equivalent sample size corrected for completeness is obtained for each 
domain. Johnston et al. (1994) estimated catalog completeness intervals for various portions of 
the SCR. These were used to define the completeness-corrected equivalent earthquake count for 
each domain based on the catalog completeness period for magnitudes equal to obsm �max . The 
typical case is that for magnitudes smaller than obsm �max  the catalog completeness periods are 
shorter than those for obsm �max . Assuming that earthquake occurrence rates are stationary in time 
for the period covered by the catalog, then the maximum likelihood estimate of the rate of 
earthquakes of magnitude mi is given by the number of earthquakes, N(mi) in the completeness 
period for mi divided by the length of the completeness period, TC(mi). An estimate of the total 
number of earthquakes of the smaller magnitude that would have been recorded in the 
completeness period for obsm �max  is then given by the estimated rate of occurrence for magnitude 
mi multiplied by TC( obsm �max ): 
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The values of )(Corrected ssCompletene imN  are then summed to provide the completeness-corrected 
sample size for each domain. These values are listed in Appendix Table K-2. 

The updated domain data set was then used to assess appropriate prior distributions. The first 
step reviewed was the development of the superdomains by pooling domains with the same 
characteristics. Johnston et al. (1994) found that separation of the domains into extended and 
non-extended crust was the most meaningful initial classification. They then used other domain 
characteristics to develop superdomains within these two classes. For the non-extended crust 
domains, the characteristics used were crustal age, stress state, and whether the predominant 
structures within a domain are favorably oriented with respect to stress (labeled as source stress 
angle). These three attributes were used to group the 146 non-extended domains into a small 
number of superdomains. The characterization of the extended crust domains included additional 
factors such as the type of crust adjacent to the domain, the presence or absence of cross 
structures, and the presence or absence of multiple features. These additional characteristics were 
used by Johnston et al. (1994) to assign the 109 extended domains to superdomains. The result of 
using more characteristics to define extended crust superdomains was to increase the number of 
possible superdomains at the expense of reducing the sample size in each. Therefore, it was 
decided to use the same three characteristics—age, stress, and source stress angle—as the basis 
for defining both extended and non-extended superdomains. This provided a consistent basis for 
superdomain definition and also increased the average sample size in the extended 
superdomains. The result was 15 active (i.e., containing earthquakes) non-extended 
superdomains and 15 active extended superdomains. Figure 5.2.1-4 shows histograms of obsm �max  
for the extended and non-extended superdomains. 

The significance of the extended and non-extended superdomain classifications was examined by 
comparing the statistics of obsm �max  for the two classes. The results indicated that the extended 
and non-extended superdomain sites had similar mean values of obsm �max . Applying a Student’s 
t-test (with the Welsh modification for unequal variances) to compare the two samples yielded a 
very high probability (p-value) of 0.99 that the two populations from which the samples were 
drawn (extended superdomains and non-extended superdomains) have the same mean. This 
suggested that the classification scheme for Mmax priors for extended and non-extended crust 
needed to be revisited. 

Examination of the values of obsm �max  in the extended crust superdomain set suggested that the 
larger values of obsm �max  occurred in the domains with Mesozoic and younger ages. Accordingly, 
an alternative grouping of superdomains was tested in which extended superdomains of 
Mesozoic and younger ages formed one group, designated MESE, and the older extended and the 
non-extended superdomains formed the second group, designated NMESE. Figure 5.2.1-5 shows 
histograms of obsm �max  for these two sets of superdomains. Application of the Student’s t-test to 
these two samples yielded a lower p-value of 0.46, suggesting that it is more likely that the two 
populations have different mean values. 

Building on the concept that a relatively young age of extension is an important factor, a new age 
classification was assigned to each extended domain based on the age of the most recent 
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extension episode. These age assignments are listed in Appendix Table K-2. The resulting sets of 
superdomains containing the Mesozoic and younger extended superdomains (MESE) are listed 
in Table 5.2.1-1, and those containing older extended and non-extended superdomains (NMESE) 
are listed in Table 5.2.1-2. Figure 5.2.1-6 shows histograms of obsm �max  for the revised 
superdomains. Using these two classifications resulted in a further reduction in the p-value 
obtained from the Student’s t-test to 0.31.  

An additional step taken was to remove from the samples those superdomains for which the 
stress classification is “Unknown” as it is likely that they would be classified as either 
compressive or extensive with more data. The “Unknown” source–stress angle classification was 
retained because it includes cases where there is no clear structural grain in the domain. In 
addition, superdomains made up of a single domain or those with a single earthquake were 
removed, assuming that the information was too limited to assess obsm �max  for these cases. The 
set of superdomains used in the final test are flagged in Tables 5.2.1-1 and 5.2.1-2. 
Figure 5.2.1-7 shows histograms of obsm �max  for this final set of superdomains. Application of the 
Student’s t-test to these two samples yielded a p-value of 0.09, indicating a reasonable likelihood 
that the mean obsm �max  values for the two populations are different. 

The fact that the computed p-value for the two samples listed in Table 5.2.1-1 is not as low as 
conventional values used to indicate statistical significance (e.g., a value of 0.05) indicates that in 
fact the distinction between Mesozoic and younger extension and older extension and non-
extension is not important to the assessment of Mmax. Therefore, a second grouping of domains 
into superdomains was performed using only age, stress, and source stress angle. The resulting 
composite superdomains (COMP) are listed in Table 5.2.1-3 and the assignment of each of the 
domains to these combined superdomains is indicated on Appendix Table K-2. Figure 5.2.1-8 
shows a histogram of obsm �max  for the combined superdomains. 

The remaining step in computing the priors was to compute the mean and standard deviation of 
obsm �max  and perform a bias correction to adjust the mean of obsm �max  to the mean of mu. The SCR 

catalog contains many earthquakes whose moment magnitudes were estimated from 
macroseismic data and are, therefore, subject to considerable uncertainty. It is important to 
capture the impact of this uncertainty on the estimates of the mean and standard deviation of 

obsm �max . The process used to compute the statistics of obsm �max  for each group of superdomains is 
as follows.  

The updated SCR catalog was used to construct an earthquake catalog for each superdomain. As 
discussed in Section 3.3.1, it is important to take into account the background distribution for 
earthquake size in computing the statistics of earthquake sizes. Assuming that earthquake size 
conforms to a truncated exponential distribution, then the density function for earthquake 
magnitude is exponential in shape— )exp()( mmfM ��� , where � is the Gutenberg-Richter 
b-value expressed in natural log units [� = b×ln(10)]. If it is assumed that uncertainty in the 
observed value of magnitude can be represented by a normal distribution, ),(~|ˆ �MNf MM , then 
using Bayes’s Theorem, the distribution for the true size of an observed earthquake is 
proportional to the product of the normal and exponential distributions. The result is a normal 
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distribution centered on the expected magnitude E[M] given by Equation 3.3-5 (repeated below 
for ease of reference). 

 ]ˆ[ˆ][ 2 MMMM ���	E  (5.2.1-4) 

In Equation 5.2.1-4, M̂  is the observed value of magnitude for the earthquake and � is the 
standard deviation of the estimate. Thus, for the case of direct observation of moment magnitude 
from data, the effect is to shift the expected value of the true magnitude from M̂  to E[M] by the 
amount 2��� . However, as discussed in Section 3.3.1, the estimation of moment magnitude 
using regressions against other size measures (other magnitude scales or shaking intensity 
measures) directly produces the estimate E[M]. This situation applies to the majority of the 
earthquakes in the SCR database. The magnitudes listed in Table K-1 are values of E[M]. In the 
cases where the magnitudes were estimated from correlations with other size measures, then the 
values listed in Table K-1 are taken directly from the source. In the case where actual moment 
magnitudes are observed, then E[M] is obtained using Equation 5.2.1-4. The value of � used was 
estimated from the combined catalog of earthquakes in the superdomains, allowing for 
differences in the rate of activity and average catalog completeness among the superdomains. 

Using the values of E[M] and �[M] for earthquakes in the SCR database, a catalog of 
earthquakes associated with each superdomain was simulated and the statistics of obsm �max  for the 
superdomain set was computed. The simulation process was repeated 10,000 times to generate a 
composite estimate of the mean and standard deviation of obsm �max  for the three sets of 
superdomains listed in Tables 5.2.1-1, 5.2.1-2, and 5.2.1-3. The results are listed in Table 
5.2.1-4. The mean values of obsm �max  were then adjusted to a mean value of mu by applying the 
bias correction process given by Equation 5.2.1-2 and illustrated on Figure 5.2.1-9. The average 
sample sizes and b-values for each group of superdomains are also listed in Table 5.2.1-3. Figure 
5.2.1-9 shows the three bias adjustment curves and Table 5.2.1-4 lists the resulting values of 
mean mu. After evaluation the results of the above analysis, as well as considering the meaning 
of prior distributions, it was assessed that the uncertainty in assigning prior distributions for 
maximum magnitude to the CEUS sources should incorporate two alternative conceptual 
models: a “two-priors” distribution model and a “single-prior” (composite) distribution model. 
These alternatives are described below. 

5.2.1.1.1 Two-Priors Distribution Model 

The results of the updated statistical analysis show that the most significant separation of the 
SCR database is between superdomains that show Mesozoic-and-younger extension and those 
that do not. The data used are based on the domains in the SCR database, defined by their most 
recent age of extension and known characteristics of tectonic stress, and on those superdomains 
with more than one domain and more than a single earthquake. This subdivision shows 
reasonable statistical significance (i.e., there is a relatively low p-value of 0.09, indicating that 
based on the difference in the mean values, there is a low probability that the two data sets came 
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from the same data population), but the statistical significance is not strong. Using the bias-
adjusted values listed in Table 5.2.1-4, the Mmax priors for the “two-prior” model are as follows: 

 Mean Mmax Sigma

Mesozoic and younger extension (MESE): 7.35 0.75 

Non-Mesozoic and younger extension (NMESE): 6.70 0.61 

These prior distributions are assigned to the applicable Mmax zones of the CEUS SSC study 
area, whose boundary and uncertainty have been appropriately accounted for in the SSC model 
(Section 6.2.1). Also, each seismotectonic zone is assigned one of these prior distributions (or 
both are assigned with associated weights) to obtain its appropriate prior distributions. 

5.2.1.1.2 Composite-Prior Distribution Model 

This model assumes that a single, composite-prior distribution is appropriate throughout the 
region covered by the CEUS SSC seismic source model. The composite prior represents the 
concept that the characteristics within SCRs that control Mmax cannot be identified with 
confidence, despite our considerable effort to do so. Therefore, the only distinction made is that 
the applicable global database must be from SCRs (as defined in Johnston et al., 1994), but no 
subdivisions are imposed beyond that. This alternative conceptual model is consistent with the 
relatively weak statistical significance of any subdivision of the SCR as indicators of Mmax. 
Using the values listed in Table 5.2.1-4, the prior distribution for the composite data set is as 
follows: 

 Mean Mmax Sigma 

Composite (COMP): 7.20 0.64 

5.2.1.1.3 Relative Weights 

The “two-priors” model is assessed to have slightly higher weight (0.6) than the “composite-
prior” model (0.4). Higher weight reflects the fact that there is some statistical significance to the 
separation of the data into the two Mmax zones, as well as an expectation that the locations of 
geologically recent crustal extension should have ample faults of sufficient dimensions for larger 
earthquakes. However, a stronger weight than 0.6 is not assessed because the statistical 
significance of the separation is not strong and could only be evaluated after multiple domains 
were combined into superdomains to increase sample size for statistical evaluation. 

5.2.1.1.4 Truncation of the Prior Distributions 

The Mmax prior distributions described above are represented by unbounded normal 
distributions. However, there is likely an upper limit to the size of earthquakes that can occur in 
the CEUS and a bound on the minimum size of the maximum magnitude, as well. 

The upper tail of the maximum magnitude distributions for all distributed seismicity seismic 
sources is truncated at M 8¼. This value is selected primarily on the basis of empirical data. M 8 
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¼ envelopes the largest magnitude events ever recorded in SCRs. The largest events reported in 
the SCR earthquake database include the 1668 M 7.87 Yellow Sea China earthquake, the M 7.8 
New Madrid earthquake, and the 1819 M 7.8 Kutch earthquake (Appendix K). M 8¼ also 
approximates the largest crustal earthquakes recorded anywhere in the world outside of 
subduction zones, including the 1905 Mw 8.1-8.5 Bulnay earthquake (375 km rupture length) 
(Prentice et al., 2010), the 1949 M 8.1 Queen Charlotte earthquake (300–490 km rupture length) 
(Bostwick, 1984; Rogers, 1986), and the 1957 M 8.0–8.1 Gobi Altay earthquake (260 km 
rupture length; Prentice et al., 2010). The estimated rupture lengths for these earthquakes are 
comparable to or significantly longer than the rupture lengths of the largest strike-slip crustal 
earthquakes included in the Wells and Coppersmith (1994) and Hanks and Bakun (2002) 
worldwide databases that are used to develop empirical relationships for magnitude and fault 
rupture parameters. The Bulnay earthquake is poorly recorded, and estimates of magnitude are 
based on physical dimensions of the rupture (M 8.1, Schwartz et al., 1998) and analysis of 
historical Wiechert seismograms (M 8.2–8.5; Schlupp and Cisternas, 2007). Published 
magnitude estimates for the 1957 Gobi Altay earthquake range from M 7.8–8.3 (Prentice et al., 
2010), with a preferred value of M 8.1 (USGS Earthquake Database, 2010; Choi et al., 2009). 
Based on these empirical observations of the largest crustal events that have occurred anywhere 
in the world, our estimate of M 8¼ as the upper-bound truncation of the maximum magnitude 
distribution reasonably captures the epistemic uncertainty in maximum magnitude. This value is 
larger than the magnitude of any observed SCR earthquakes. 

The prior distributions are also truncated at the minimum magnitude that is assessed to be 
technically defensible, given a consideration of the observed magnitudes of earthquakes that 
have occurred with SCRs worldwide. Review of the values of obsm �max  listed in Tables 5.2.1-1, 
5.2.1-2, and 5.2.1-3 for the superdomains used to develop the prior distributions indicates a 
minimum value of 5.5. Conceptually, this value should be increased slightly by the bias 
adjustment described above. However, bias adjustments are typically small at these low 
magnitudes (Figure 5.2.1-9). In addition, the parameter being assessed is the minimum of a 
distribution, which should be below the minimum observed. Therefore, it was assessed that an 
appropriate lower truncation point for the prior distributions is M 5½.  

5.2.1.1.5 Addressing Criticism of the Bayesian Approach 

Kijko et al. (2009) have criticized the use of the Bayesian approach for estimation of Mmax as 
producing results that are biased low. They demonstrate the issue by performing sumilations of 
catalogs of earthquakes generated from an exponential distribution with a known Mmax (set at 
the mean of a hypothetical Mmax prior distribution) and then estimating the Mmax using the 
posterior distribution generated from the product of the prior with the sample likelihood function 
(e.g., the lower right-hand plots on Figures 5.2-1 and 5.2-2). Discussions with the lead author (A. 
Kijko, pers. comm., 2011) indicate that Kijko et al. (2009) use the mode of the posterior as the 
point estimate of Mmax. However, the application of the Bayesian Approach for Mmax 
estimation in the CEUS SSC Project uses the full posterior distribution. A better point estimate 
of this result is the mean of the posterior rather than the mode. The effect of the use of the mode 
versus the mean can be clearly seen by comparing the posterior distributions on Figures 5.2.1-1 
and 5.2.1-2. On Figure 5.2.1-1, the sample size is small and the posterior distribution has a shape 
very similar to the prior with only a minor shift in the mode. The shift in the mean between the 
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prior and the posterior is even less. On Figure 5.2.1-2, the sample size is large and the likelihood 
function has dramatically affected the shape of the posterior such that the mode occurs at the 
maximum observed value. However, the posterior distribution does extend to magnitudes larger 
than the maximum observed such that the mean would be a larger value. 

The effect of use of the mode of the posterior, as in Kijko et al. (2009), versus the mean of the 
posterior, a more appropriate point estimate of the results used in the CEUS SSC Project, is 
illustrated on Figure 5.2.1-10. A prior distribution for maximum magnitude with a mean of 6.9 
and a standard deviation of 0.5 was assumed. Various size samples of exponentially distributed 
earthquakes were then simulated from an exponential distribution of magnitudes truncated at the 
mean of the prior, 6.9. For each sample the likelihood function was used to develop a posterior 
distribution. The mean and the mode of this posterior were then computed. The process was 
repeated for 1000 simulations of each sample size. The average values of the mean and mode for 
each sample size are plotted on Figure 5.2.1-10. These results confirm the conclusion of Kijko et 
al. (2009) that the mode of the posterior is a biased estimate of Mmax, with the bias to smaller 
values. However, the mean of the posterior does not display any significant bias. Therefore, it is 
concluded that the application of the Bayesian approach using the full posterior distribution 
should not lead to biased estimates of Mmax. 

5.2.1.1.6 Application to CEUS Distributed Seismicity Sources 

The application of the Bayesian Mmax approach requires development of the likelihood function 
Equation 5.2.1-1 from the assessment of the maximum observed earthquake in each source and 
the number of earthquakes larger than a specified minimum magnitude. The assessment of these 
parameters was based on the project earthquake catalog (Chapter 3), and descriptions of the 
largest earthquakes in each source are provided in Chapters 6 and 7. The minimum magnitude 
used for the earthquake counts is M 4.7, as this is at the lower limit of one of the magnitude 
intervals used in the earthquake catalog analysis and there is a focus on earthquakes of 
significance for a hazard analysis. The magnitude estimates for the earthquakes in the CEUS 
catalog are subject to uncertainty. This uncertainty was incorporated into the assessment of 

obsm �max  using the procedure described above for the SCR domains by simulating 100,000 sets of 
earthquake magnitudes for the domain catalogs, selecting the largest magnitude for each 
simulated catalog, and then binning these values in 0.1-magnitude units to develop a distribution 
for obsm �max . In some cases, there is uncertainty in assigning the largest observed earthquake to a 
particular source, due to uncertainty in location for earthquakes near source boundaries. This 
uncertainty was incorporated by developing alternative catalogs including or excluding the 
particular earthquake, developing simulated distributions for obsm �max  for each case, and then 
combining the results to produce a composite distribution. 

The uncertainty distribution for obsm �max  was incorporated into the assessment of Mmax 
distributions for the distributed seismicity sources by developing a likelihood function for each 
possible value of obsm �max  using Equation 5.2.1-1, using this likelihood function with the 
appropriate prior to develop a posterior Mmax distribution, and then weighting this posterior by 
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the probability assigned to the value of obsm �max . The sum of these weighted posteriors represents 
the composite Mmax distribution for the source. 

5.2.1.2 Kijko Approach to Mmax Assessment 

The Kijko approach (Kijko, 2004) provides an assessment of Mmax based on only the observed 
distribution of earthquakes in a region. As described in Kijko (2004), the cumulative distribution 
for obsm �max  in a source zone is given by 
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where FM(m) is the cumulative probability distribution for magnitude and parameters m0, mu, and 
N as defined above in Section 5.2.1.1. Kijko (2004) shows that the expected value of obsm �max  is 
given by the expression  
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Integration by parts yields 
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which leads to the expression:  

 � �
�	 �

u

obs

m

m
mobs

u mmFMEm
0

max
d)()( max  (5.2.1-8) 

Kijko (2004) presents three alternative relationships for the application of Equation 5.2.1-8. The 
first is based on application of the truncated exponential distribution for FM(m), leading to the 
distribution for )(

max
mF

obsm �
 given by Equation 5.2.1-2. This is designated the K-S (Kijko-

Sellevoll) estimator by Kijko (2004). The second relationship incorporates uncertainty in � (the 
b-value) and takes the form 
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where 2/ ���	p , % &2/ ���	q , and � �� � 1

0/(1
�

���	
qu mmppC� . This second formulation is 

designated the K-S-B (Kijko-Sellevoll-Bayes) estimator by Kijko (2004). The third formulation 
makes no assumption about the form of the magnitude distribution. Instead, it used a kernel 
density estimation technique to estimate the form of the magnitude distribution from the 
observed magnitudes. This form, designated the N-P-G form in Kijko (2004) was not 
investigated for application in the CEUS SSC. Its intended use is to cases where characteristic 
earthquake type behavior is observed. In the CEUS SSC model, known earthquakes of this type 
are modeled by a separate set of RLME sources. With these earthquakes addressed by separate 
sources, the remaining earthquakes in the Project catalog display an approximately exponential 
distribution, which are addressed by the K-S and K-S-B estimators. 

The behavior of the K-S and K-S-B estimators as a function of obsm �max  and N is shown on 
Figure 5.2.1-11. The values of mu were computed by iteratively solving Equation 5.2.1-8 until 
convergence. Note that the estimates for the K-S estimator reach a point where the iterative 
solutions do not converge. The K-S-B estimator converges for all values of mu tried. Also shown 
on Figure 5.2.1-11 is the relationship between mu and the median value given by Equation 
5.2.1-2, indicating that the bias adjustment used in developing the Bayesian priors is nearly 
equivalent to the Kijko (2004) estimators of mu. This is not surprising given that they are based 
on similar formulations. 

The relationships shown on Figure 5.2.1-11 indicate that the Kijko estimators for the expected 
value of mu are subject to the same need for large values of N as the bias adjustment relationship 
used to develop the Bayesian priors. In order to apply the approach to situations where N is 
small, an additional constraint must be used. This constraint is supplied by the assumption of a 
limiting size for CEUS earthquakes that was used to truncate the Bayesian prior distributions in 
Section 5.2.1.1. Kijko (2004) presents the following relationship for the cumulative probability 
function for mu:  

 )(1)()( maxmax
zmFmFzmP obsm

uu
obs ��

�		�  (5.2.1-10) 

Figure 5.2.1-12 shows the behavior of Equation 5.2.1-10 as a function of N. For values of N 
below about 100, the value of )( umF  reaches a limiting value less than 1.0 as mu approaches 
infinity (�). Kijko (2004) discusses this limiting value of )( umF  as an indicator of the 
probability that the K-S or K-S-B estimator provides meaningful results. 
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As indicated by Figure 5.2.1-12, the cumulative distribution function )( umF  does not provide a 
complete probability distribution for mu in the unbounded case. However, if a limiting value for 
mu is imposed, then )( umF  can be truncated at this point and renormalized to produce a 
probability distribution for mu. 

While this approach allows one to construct a proper probability distribution for mu regardless of 
the value of N and obsm �max , it involves truncation of substantial probability mass for most 
practical applications. The truncated probability mass is given by P(mu > 8¼) calculated using 
Equation 5.2.1-10. The assessment was made that the point where the truncated probability mass 
equals the remaining probability mass, P(mu > 8¼) = 0.5, represents the limit of applicability of 
the Kijko Mmax approach. 

The application of a lower truncation point for Mmax distributions at M 5½ requires a 
modification of the approach. The first step is to compute the unbounded cumulative distribution 
function )( umF  using Equation 5.2.1-10. This distribution is modified by imposing the 
requirement that mu must be �5½ by computing its derivative, removing the probability mass 
below 5½, if any, and then renomalizing. The effective result is to increase the value of 
P(mu > 8¼) for those cases where the maximum observed magnitude is less than 5½. 

After a variety of exploratory calculations and considerations, the following key constraints were 
made in the application of the Kijko approach to assessment of Mmax for the CEUS SSC model: 

' The K-S-B approach (Kijko, 2004) that incorporates the uncertainty in b-value for the 
exponential distribution will be used, with an upper truncation at M 8¼ and a lower 
truncation at M 5½. 

' Uncertainties in the magnitude of the largest earthquake in each source are assessed using the 
approach described in Section 5.2.1.1.5.  

' For those sources with a maximum observed magnitude derived from the paleoseismic 
record, the Kijko approach cannot be used because the approach assumes a complete record 
(historical earthquakes are adjusted for catalog completeness). We have no approach to 
formally evaluate the completeness of the paleoseismic record. An exploratory calculation 
using, for example, the four earthquakes identified for the Illinois Basin Extended Basement 
(IBEB) source, which has the largest number of observed paleoseismic earthquakes for any 
seismic source in the model, confirms that a high value of F(mu > 8¼) results from 
consideration of these events. Therefore, giving zero weight to the Kijko approach is 
reasonable. 

' The weighting scheme for the use of the Bayesian approach versus the Kijko approach 
should be source-specific (to account for the numbers and magnitudes of observed 
earthquakes). In no case should the Kijko approach be given higher weight than the Bayesian 
approach, considering the higher reliance on the Bayesian approach (and similar analogy-
based approaches) by the technical community. 
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5.2.1.3 Weights for the Alternative Mmax Approaches 

Because the probability that Mmax is much greater than 8 is a measure of the statistical stability 
of the Kijko approach—and is noted by its author as providing a measure of whether the 
approach is producing meaningful Mmax estimates—it is used as an index for weighting the 
Kijko versus Bayesian approaches. At values of P(mu > 8¼) = 0.5 and higher, the Kijko 
approach is assessed to have zero weight. Likewise, at P(mu > 8¼) = 0, where Kijko’s approach 
is at its strongest with large numbers of larger earthquakes, the Kijko approach is assessed to 
have equal weight (0.5) relative to the Bayesian approach. With these endpoints, a linear 
relationship is developed that provides the weight for the Kijko approach as a function of the 
calculated value of P(mu > 8¼) for the source of interest. 

Using the linear relationship between P(mu > 8¼) values and the Kijko weights, the calculated 
weights for the Kijko approach for the various source zones are shown in Table 5.2.1-5. Using 
the assumptions discussed previously and the cutoff of a P(mu > 8¼) value equal to or greater 
than 0.5, it can be seen that the Kijko approach is given zero weight for several sources: for some 
sources, the Kijko approach is given zero weight because the paleoseismic record is used to 
constrain the size of the maximum observed event; for others, zero weight is given because of 
the high P(mu > 8¼) values. 

5.2.1.4 Example Mmax Distributions 

Using the Bayesian and Kijko approaches in the manner described in this section, Mmax 
distributions were developed for both the Mmax zones (Section 6.2.3) and for the seismotectonic 
zones (Section 7.4.2). An example of how these distributions are displayed is given on Figures 
5.2.1-13 and 5.2.1-14. As a reminder, in the master logic tree, the Mmax zones approach is 
assessed a weight of 0.4, versus 0.6 for the seismotectonic zones approach. Given the Mmax 
zones approach, the weight assessed for a single, composite zone is 0.4, versus 0.6 for two 
Mmax zones. Given two Mmax zones, the weight assessed for the “narrow” interpretation of 
Mesozoic and younger extended zone (MESE-N) configuration is 0.8, versus a weight of 0.2 
assessed for the “wide” interpretation (MESE-W). 

Figure 5.2.1-13 shows the Mmax distribution for the Mesozoic and younger extended zone 
(MESE-N), which is one of the Mmax zones. Shown in all of the plots, regardless of the assessed 
weights, are the results for the Kijko approach, the Bayesian approach using the composite prior 
distribution, and the Bayesian approach using a MESE or non-MESE prior distribution. The 
weights assessed for the Kijko approach in Table 5.2.1-5 are functions of the P(mu > 8¼) value 
and whether paleoseismic data is used to define the size of the maximum observed magnitude. 
As discussed in Section 5.2.1.1.3, the weight assessed for the “two-priors” model is 0.6, and to 
the “composite” model, 0.4. Mmax estimates for each of these prior distributions are given along 
with their weights, which are the product of the Kijko versus Bayesian weights and the two-
priors versus composite-prior weights. The final composite Mmax distribution is shown by the 
thick red histogram that reflects the probability mass function at 0.1-magnitude increments. 

A second example of Mmax distribution is shown on Figure 5.2.1-14 for the Northern 
Appalachian (NAP) seismotectonic zone. The same convention is used in the labeling and 
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display of the results for the Kijko and Bayesian approaches. In this case, the weight assessed for 
the Kijko approach is zero, based on a P(mu > 8¼) being greater than 0.5. The results of the 
Kijko approach are shown simply for purposes of comparison, but they are not incorporated into 
the final composite Mmax distribution, shown in red. 

For use in the hazard calculations, the maximum magnitude distributions for each source are then 
represented by a five-point discrete approximation to an arbitrary continuous distribution 
developed by Miller and Rice (1983). (The use of a discrete representation of a continuous 
distribution is described in more detail in Section 5.3.3.1.3.) The distributions for the two 
example sources are listed in Table 5.2.1-6. 

5.2.2 Other Mmax Issues  

One of the key uncertainties regarding the assessment of Mmax for seismic sources in the CEUS 
is spatial variation of Mmax throughout any given seismic source. That is, is it realistic to 
assume that a single Mmax distribution developed for a seismic source applies to all locations 
within that source? To a large extent, this issue is resolved within more active regions where 
active faults have been identified and Mmax can be assessed on a fault-specific basis using 
approaches such as fault rupture dimensions. In SCRs like the CEUS, however, the physical 
bases for specifying differences in Mmax spatially are not known with confidence. Unless 
specific faults can be identified that are the causative structures, the use of fault dimensions to 
constrain Mmax is problematic. The tectonic history of a region and the presence of significant 
geologic structures suggest that such structures might host future larger earthquakes, but no 
systematic studies have been conducted to show that the presence or absence of older geologic 
structures leads to differences in Mmax potential. Further, many SCRs show evidence of 
significant older geologic structures, but they show no evidence of large earthquake occurrence 
(Johnston et al., 1994). Also, in his inventory and evaluation of possible Mmax approaches, 
Wheeler (2009, pp. 12-13) cites the difficulties in using local geologic structures to estimate 
Mmax when there is no direct geologic evidence for young faulting. 

Using current approaches, the broad distributions of Mmax developed for seismic sources in the 
CEUS are assumed to be entirely epistemic and applicable throughout the source of interest. If 
the spatial variation of Mmax were known, that is, if it were possible to say that one part of the 
source should have a higher Mmax than another part, then that variation could be captured as 
aleatory variability. The result might be two epistemic distributions—one for regions marked by 
higher Mmax and one for regions with lower Mmax—and both distributions could be narrower 
than the current distribution for the entire source. At present, if there is a basis for identifying a 
spatial variation in Mmax, that information is used in the CEUS SSC Project to identify a 
separate seismic source (see Section 4.2.3). The Mmax distributions for the seismic sources in 
the CEUS developed for the Mmax zones (Section 6.3.2) and for the seismotectonic zones 
(Section 7.4.2) are quite broad in many cases to reflect the current uncertainties that exist with 
the estimation of Mmax within an SCR. It is hoped that the estimation of Mmax will continue to 
be a focus of research efforts in the scientific community, and that those efforts will lead to 
reductions in the epistemic uncertainties that currently exist. 



 
Chapter 5 
SSC Model: Overview and Methodology 

5-22 

5.3 Earthquake Recurrence Assessment 
5.3.1 Smoothing to Represent Spatial Stationarity 

The CEUS SSC model is based to a large extent on an assessment that spatial stationarity of 
seismicity will persist for time periods of interest for PSHA (approximately the next 50 years for 
engineered structures). Stationarity in this sense does not mean that future locations and 
magnitudes of earthquakes will occur exactly where they have occurred in the historical and 
instrumental record. Rather, the degree of spatial stationarity varies as a function of the type of 
data available to define the seismic source. RLME sources are based largely on paleoseismic 
evidence for repeated large-magnitude (M � 6.5) earthquakes that occur in approximately the 
same location over periods of a few thousand years. Uncertainties in the locations and sizes of 
these events are a function of the types of data available (e.g., fault-specific repeated 
displacements on the Meers fault, and shaking effects over a relatively small region for the 
Marianna source). Because the record that defines the RLME sources spans a relatively long 
time period and records large-magnitude events, repeated events for these sources are expected 
to occur within a restricted location defined by the RLME source.  

On the other hand, patterns of seismicity away from the RLME sources within the Mmax and 
seismotectonic zones are defined from generally small- to moderate-magnitude earthquakes that 
have occurred during a relatively short (i.e., relative to the repeat times of large events) historical 
and instrumental record. Thus the locations of future events are not as tightly constrained by the 
locations of past events as for RLME sources. As discussed below in Section 5.3.2, the spatial 
smoothing operation is based on calculations of earthquake recurrence within one-quarter-degree 
or half-degree cells, with allowance for “communication” between the cells. Both a- and b-
values are allowed to vary, but the degree of variation has been optimized such that b-values 
vary little across the study region. Also, a-values are neither “spiky,” reflecting too strong of a 
reliance on the exact locations and rate densities of observed events, nor too smooth, reflecting 
the belief that the observed record does not provide a spatial constraint on rate density variation. 
Likewise, the recurrence calculation considers weighting of magnitudes in the recurrence rate 
calculations; thus moderate events are assigned more weight than smaller events. 

Ultimately, any smoothing operation of seismicity is founded on expert judgment related to the 
expected future distribution of moderate- to large-magnitude events. The CEUS SSC model 
gives strong consideration to locations of RLME sources as being spatially stationary through the 
future time periods of interest. The smoothing operation within the distributed seismicity zones 
results in variations in a- and b-values over scales that were judged by the TI Team to be 
reasonable, given the technical community’s views on spatial stationarity and the relationship 
between observed small- to moderate-magnitude seismicity and future moderate- to large-
magnitude seismicity. 
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5.3.2 Smoothing Approach 

5.3.2.1 Development of Penalized-Likelihood Approach and Formulation 

5.3.2.1.1 Model for the Penalized-Likelihood Function of Recurrence Parameters  

This section introduces and discusses the formulation for the calculation of earthquake 
recurrence parameters for one source zone (or one cell within a source zone) under very simple 
assumptions, then reformulates and expands the formulation to include a number of elements that 
make the formulation more robust, realistic, and flexible. These elements include the 
reformulation in terms of magnitude bins, and the introduction of magnitude-dependent weights, 
catalog incompleteness, the effect of maximum earthquake magnitude (Mmax), spatial variation 
of parameters within the source zone, and the prior distributions of b. 

The first model to consider is the basic model, first presented by Aki (1965) and others. In this 
formulation, the number of earthquakes with magnitudes in the interval between m and m + dm 
that occur in a source zone, within a time period of duration T, follows a Poisson probability 
distribution, with mean given by the following expression: 

 
0

)( 0)( mmdmeATdmmMmn mm �	��
 ���(�  (5.3.2-1)

where A is the area of the source zone (in units of equatorial degrees squared), T is the time 
period of interest (i.e., the duration of the catalog in years), � is the rate per unit time and per unit 
area for earthquakes with magnitude greater than or equal to 0m  (the lowest magnitude 
considered in the recurrence analysis), and �  is the slope of the exponential magnitude-
recurrence law (i.e., the b-value times ln[10]). In addition, it is assumed that the number of 
earthquakes in non-overlapping magnitude intervals is independent, so that earthquake 
occurrences in time represent a marked Poisson process.  

Before going further, it is useful to make some comments about the above formulation. First, 
Mmax is not considered at this early stage. Second, the magnitude 0m  is not the same as the 
lower-bound magnitude considered in the hazard integration; it is typically much smaller. This 
project uses 0m  equal to moment magnitude 2.9. Finally, many of the assumptions in this initial 
formulation will be relaxed later in this section. Still, this initial formulation serves as a building 
block for the more general formulation and is helpful because it lends itself to the development 
of useful insights about the methodology. 

Data input to this first simplified model consist of the list of earthquake magnitudes in the 
catalog; i.e., Nmmm �,, 21 , where N is the number of earthquakes in the catalog. In this project, 
these magnitudes are all moment magnitudes, and some of them may have been converted to 
moment magnitude from the magnitude, epicentral intensity, or felt area in the primary catalogs 
(see Section 3.3). In addition, the catalog is considered complete over the time period T, for all 
magnitudes above 0m . A somewhat surprising feature of the Poisson process is that the 
occurrence times of these earthquakes are immaterial, as long as the earthquakes occurred within 
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the time period T of the catalog. This property is actually a natural consequence of the “lack of 
memory” property of the Poisson process. 

The likelihood function for the model parameters takes the form 
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where all multiplicative constants that are independent of the parameters have been omitted 
because they do not affect the results. In this equation and in the equations that follow, index i 
denotes the earthquakes in the catalog and N denotes the number of such earthquakes. Note that 
the integral is equal to T in this special case because T is independent of magnitude (and can be 
moved out of the integral) and the exponential probability density function integrates to unity. 
This simplification does not apply in the more realistic case to be considered later, where the 
completeness time depends on magnitude.  

In general, the likelihood function indicates the degree of consistency between the parameters 
that one wants to estimate (in this case, (  and � ) and the available data (in this case, the 
number of earthquakes and their magnitudes during a time period T). If the data are abundant, the 
likelihood function has a narrow shape, indicating low uncertainty. If the data are scarce, the 
likelihood function has a broad shape, indicating high uncertainty. In the context of the 
maximum-likelihood method, one chooses the parameters that maximize the likelihood function 
and one estimates the uncertainty using the second derivatives of the natural log of the 
likelihood, evaluated at the point of maximum likelihood.  

To derive Equation 5.3.2-2, one can formulate the Poisson likelihood function for each small 
interval of width dm, using Equation 5.3.2-1, multiply these likelihoods, and then compute the 
limit of this product as dm approaches 0, taking into account that when dm is very small, the 
number of earthquakes in an interval is either 0 or 1.  

Note that the integral in Equation 5.3.2-2 is equal to T in this special case because T is 
independent of magnitude (and can be moved out of the integral) and what remains inside the 
integral (i.e., the the exponential probability density function) integrates to unity. This 
simplification does not apply in the more realistic case to be considered later, where the 
completeness time depends on magnitude. If we apply this simplification, we note that the 
likelihood function is separable into a product of factors that depend on the rate (  and factors 
that depend on the exponential slope � , i.e., 
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Note that the ( -dependent portion and the � -dependent portions of the likelihood function are 
separable, This separability is lost later, as the formulation is made more robust and realistic.  
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The first (( -dependent) portion in the above equation is the traditional likelihood for a Poisson 
distribution. The second ( � -dependent) portion is the traditional likelihood for an exponential 
distribution.  

This separability also implies that the maximum-likelihood estimates of (  and �  are decoupled 
in this simple case. In particular, by taking the logarithm of the above expression, differentiating 
with respect to each parameter, making the result equal to 0, and solving for the parameter, we 
obtain the following well-known results for the maximum-likelihood estimates of (  and � : 
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The last result was first derived independently by Aki (1965) and Utsu (1965). Note that in the 
case where N = 0, the maximum-likelihood estimate of the rate � is zero. On the other hand, if 
one is working with the entire likelihood function (in order to represent an epistemic 
uncertainty), one sees that the �-dependent portion of the likelihood in Equation 5.3.2-3 for N = 0 
follows an exponential distribution, which happens to have a mean value of 1/(AT) (i.e., the 
value in Equation 5.3.2-4 corresponding to N = 1). Thus, consideration of the full-likelihood 
function for (  gives rise to a natural “floor” in regions of low seismicity. 

Note also that this likelihood function for the Poisson portion has sharper peaks (i.e., lower 
coefficient of variation, or COV) when N is large, indicating that only a narrow range of values 
of (  are consistent with the catalog. In contrast, the distribution is broad when N is small 
(becoming as broad as the exponential distribution when N = 0). This is illustrated on Figure 
5.3.2-1. 

Similarly, Figure 5.3.2-2 shows the likelihood function for the b-value, for different values of N. 
Again, the COV decreases as N increases. 

Equation 5.3.2-3 is in fact easier to derive than the equivalent 5.3.2-2. One begins by introducing 
the standard assumptions that the number of earthquakes follows a Poisson distribution, 
independent of the magnitudes, and that the magnitudes are exponential and independent 
identically distributed (iid). Equation 5.3.2-3 then follows automatically as the product of the 
Poisson probability mass function and the N exponential probability density functions (again, 
omitting multiplicative constants that are independent of the parameters (  and � ).  

This simple formulation of the magnitude-recurrence model is useful as a starting point but is not 
always robust and sufficient in practice. The remainder of this section describes the various 
modifications to the formulation, in order to make it more robust and flexible.  
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The first difficulty arises from the continuous nature of the above formulation, which assumes 
that the exponential assumption applies at both small and large scales. In practice, the 
exponential assumption may not apply at small scales (i.e., over differences of a few tenths of a 
magnitude units, or less), for a number of reasons. Most importantly, some of the earthquake 
magnitudes in the catalog have been effectively binned into integer epicentral intensity and then 
converted to magnitude. Other possible causes include problems in the conversion to moment 
magnitude, edge effects, or the phenomenon investigated by Lombardi (2003).  

This deviation from exponentiality is illustrated by Figure 5.3.2-3, which shows a histogram of 
the magnitudes in the earthquake catalog developed in Chapter 3 and used later in this section for 
the calculation of recurrence parameters. Focusing on the left portion of this figure (say, 
magnitudes lower than 3.5), one notices that the data deviate substantially from a smooth 
exponential shape. These deviations are not consistent with the exponential model, given the 
very large earthquake counts in these bins. These large earthquake counts mean that the 
continuous formulation of the likelihood may incorrectly interpret the local slope of the 
histogram around magnitude 3 as containing information about the exponential slope � . 

In order to avoid these potential problems, the likelihood function is reformulated in terms of the 
earthquake counts in discrete magnitude bins, with bin sizes appropriately selected so that 
magnitudes converted from intensity fall in the middle of these bins. 

 Considering bins of ,  magnitude units (i.e., first bin between magnitudes 0m  and ,�0m , 
second bin between ,�0m  and ,20 �m , etc.), one can write the likelihood function  
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where kn  is the number of earthquakes in the k-th magnitude bin ( 1
00
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 kk mmm ),  
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is the probability mass associated with the k-th magnitude bin, and ,)1(00 ��	 kmmk  is the 
magnitude at the lower end of the k-th magnitude bin. One can obtain Equation 5.3.2-6 from 
Equation 5.3.2-2 by replacing each occurrence of the exponential density )(exp[ 0mm ����  
with the value of kp  for the magnitude bin where m  falls. By working with earthquake counts in 
discrete bins, sensitivity to small-scale deviations from the exponential model (i.e., deviations at 
scales of of a few tenths of a magnitude unit or smaller) is removed, resulting in a more robust 
formulation. We note that the expression for the likelihood function in Equation 5.3.2.6 is is still 
a separable function of (  and � , although one cannot easily solve for ML� .  
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Perhaps the best known example of this discrete-magnitude formulation for the likelihood 
function is the paper by Weichert (1980). The discrete-magnitude formulation was also used in 
the EPRI-SOG project.  

It is also worth noting that the number kn  in Equation 5.3.2-6 is not necessarily an integer 
number. This project accounts for the effect of uncertainty in magnitude by calculating an “event 
factor” for each earthquake (see Chapter 3). Thus, kn  represents the sum of the event factors for 
all the earthquakes in the k-th magnitude bin. 

A second modification is required because the assessment may result in a lower weight for lower 
magnitude bins. For instance, the magnitude-recurrence law may deviate from exponential, or 
the magnitude-conversion models or completeness model may be less reliable for lower 
magnitudes. The USGS (Petersen et al., 2008) use of alternative low-magnitude cutoffs may be 
viewed as a special case of magnitude-dependent (or magnitude- and time-dependent) weights. 
One can represent these weights by the quantities �,, 21 ww  (indexed by k, the magnitude-bin 
number; note also that these weights do not necessarily add to 1, and the resulting weighted-
likelihood function is  
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The introduction of weights, resulting in Equation 5.3.2-8, is equivalent to raising the portion of 
the likelihood function associated with magnitude bin k to a power 1
kw . Raising to a power 
less then 1 has the effect of flattening this portion of the likelihood, without shifting the location 
of its peak. For instance, if there are 1n  earthquakes in the first magnitude bin, and this bin is 
given a weight of 0.1, the associated portion of the likelihood becomes flatter (as if it had only 

10/1n  earthquakes), but the location of its peak remains unchanged (recall Figures 5.3.2-1 and 
5.3.2-2). 

We note that the summation in the above equation cannot be simplified after the introduction of 
the weights. As a result, it is impossible to obtain the maximum-likelihood estimates of � and � 
in closed form.  

A third modification is necessary to account for magnitude-dependent catalog completeness. 
Following EPRI-SOG (1986), earthquakes in magnitude bin k  are counted if they occurred after 
a certain date kt ,0 , even if the catalog is not fully complete after that date, and the associated 
catalog duration is characterized by the Equivalent Period of Completeness, which is defined as 
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where );( ktPD  is the detection probability for magnitudes in bin k at time t. The detection 
probabilities and equivalent periods of completeness are calculated in Section 3.5 using the 
EPRI-SOG methodology for determining completeness (which includes a penalized-likelihood 
analysis of recurrence). For the purposes of this discussion, it is assumed that the equivalent 
period of completeness is the same within the source zone under consideration and for all 
magnitudes in a certain magnitude bin. In the final model to be developed here, it will be 
assumed that the equivalent periods of completeness are constant within each cell comprising the 
source zone. Another assumption in this derivation is that all earthquakes under consideration 
(which have magnitudes Nmmm �,, 21 ) occurred after their corresponding dates )(,0 imkt .  

After introducing magnitude-dependent completeness, the likelihood function becomes  
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A fourth modification is necessary to account for maximum magnitude maxM . In the case of a 
single maxM  value, Equation 5.3.2.7 is modified by considering that portions of a magnitude bin, 
or the entire bin, may be above maxM , resulting in the expression 
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There should be a normalizing constant in the above equation, but this constant is very nearly 
equal to unity (because 0m  is 2.9 and maxM  is 5.5 or greater) and can be neglected in this case. 
For the case where there is epistemic uncertainty in maxM  (which is represented in this project by 
a five-point discrete distribution), one can use the expected value (with respect to maxM ) of the 

kp  given by Equation 5.3.2-11; that is,  

 � �)( maxmax
MpEp kMk 	  (5.3.2-

12)

where ][
max

'ME  denotes the expect-value operation with respect to uncertainty in maxM . Another 
consequence of introducing maxM  is that the number of magnitude bins becomes finite. In the 
equations that follow, Q  will denote the highest bin with a nonzero value of kp .  

Up to this point, the formulation does not include spatial variation of parameters within a source 
zone. Consideration of spatial variation is necessary in this project because the assumption of 
geographically constant rate and b-value is not necessarily applicable to some of the large source 
zones developed in Chapter 4. There are two commonly used approaches to introduce spatial 
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variation of seismicity within a source zone; namely, the penalized-likelihood (EPRI-SOG, 
1986) and kernel approaches (e.g., Frankel, 1995; Stock and Smith, 2002). This project uses the 
penalized-likelihood approach, with a number of methodological refinements. A discussion of 
the two approaches and their merits is presented in Section 5.3.2.4. 

The first step in the penalized-likelihood approach is to divide the source zones into cells for the 
purposes of the recurrence-model evaluation and hazard calculations. This division is often done 
along parallels and meridians. This project uses a cell dimension of one-quarter degree by one-
quarter degree. For source zones of large dimensions, the cell size is increased to one-half degree 
by one-half degree for computational efficiency. Cells near source-zone boundaries have smaller 
areas and irregular shapes, generated so that the geometry of a source zone is honored in the 
recurrence and hazard calculations, without any quantization error. 

The likelihood function is then formulated separately for each cell in the source zone. The joint 
likelihood function for the values of � and � in all M cells within the source zone takes the form:  
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where vectors ��,  contain the values of � and � in all cells within the source zone, j is the index 

for the cells (j=1, …, M). Also, the notation has been changed slightly from previous equations, 

so that ),( jkTE , ),( jkn , and ),( jkp  are the equivalent period of completeness, earthquake 

count, and truncated-exponential bin probability (Equation 5.3.2.12) for magnitude bin k  and 

cell k . 

Because cells are small and most cells do not contain enough earthquakes to allow the reliable 
estimation of j(  and j�  using these earthquakes alone, and because very large variations in � 
and � (particularly the latter) between adjacent cells are not considered physically realistic, one 
introduces penalty functions that penalize those solutions where (  and �  have large variations 
between adjacent cells. Thus the solution to the penalized-likelihood problem represents an 
optimal compromise between consistency with the data (as indicated by a high value of the 
likelihood) and smoothness (as indicated by a low value of the penalty function). For a given 
value of the smoothing parameters, the likelihood has a stronger effect on the solution in cells 
where data are abundant because only a narrow range of values are consistent with the data.  

This project utilizes a penalty function based on the Laplacian operator, which represents a 
generalization of the second derivative to multiple dimensions, and is commonly used in 
applications of this kind (e.g., Fukuda and Johnson, 2008). For a function f(x,y) in two 
dimensions, the Laplacian operator and its lowest-order finite difference approximation are given 
by 
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where ),( yxf
x

 is the average value of f in the two cells adjacent to the (x,y) cell in the x 
direction. In the special case of yx -	- , the finite-difference Laplacian at (x,y) is proportional 

to the difference between ),( yxf
x

 and the average of the values in the four adjoining cells (not 
counting diagonal cells that share a vertex with the cell under consideration). This project defines 
the Laplacian in terms of distances in kilometers (rather than in degrees) because this makes 
more physical sense, resulting in )cos(/ Latitudeyx 	--  and yielding a slightly more 
complicated expression for the finite-difference Laplacian. Based on the above, and assuming a 
normal distribution for variations in �  between a cell and its neighbors, the penalty function for 
�  over the entire source source zone is of the form  
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where the product extends over all cells, �� -  controls the degree of smoothing, and 
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Because y-  is constant, it can be absorbed into ��- . The change from a factor of 2 to a factor of 
½ in the definition of j�-  is introduced for the sake of consistency with the EPRI-SOG 
formulation, and its effect is absorbed into ��- . For a cell at the edges of the source zone, 

),( jj
x

yx�  or ),( jj
y

yx�  is calculated using only cells on one side. 

The penalty term );( (( �-�f  for the rate is constructed in the same manner, except that the 
Laplacian term j(-  is calculated in terms of )ln((  instead of (  itself.  
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It is useful to consider the effect of ��-  (and the corresponding (� -  for rate), which control the 
degree of smoothing. A lower value favors solutions with less variation between adjacent cells. 
In the limit, infinitesimally small values of (� -  and/or ��-  lead to constant (  and/or �  
throughout the source zone. At the other extreme, very large values of (� -  and ��-  is 
equivalent to determining (  and �  separately for each cell, considering only the earthquakes in 
that cell, without any consideration of spatial continuity. 

The two penalty terms, );( (( �-�f  and );( �� �-�f , multiply the likelihood function in Equation 
5.3.2-13, favoring solutions that are consistent with the data and, simultaneously, show less 
variation between parameters )ln((  and �  in adjacent cells. One can fix the penalty terms (�-  
and ��-  and then solve the penalized-likelihood problem. In this case one can view the penalty 
terms as prior distributions on the degree of smoothness of )ln((  and � .  

Alternatively, one can solve simultaneously for the optimal values of ( , � , and (�-  and ��- . 
In this case, (�-  and ��-  are often called hyperparameters. Larger values of these 
hyperparameters reduce the penalizing effect of the exponential penalty term in Equation 
5.3.2-15 and tend to increase the value of the penalized likelihood (by allowing a very close 
match between model predictions and data in each individual cell). At the same time, these larger 
values of ��-  in the denominator of Equation 5.3.2-15 tend to decrease the value of the 
penalized likelihood. The value of ��-  at which this optimal balance is achieved depends on the 
earthquake data, in particular, how many earthquakes there are and how they are distributed in 
latitude-longitude-magnitude space. This project will refer to the estimates of (�-  and ��-  
obtained using this approach as the objective estimates of these hyperparameters. They are 
objective in the sense that they are determined automatically from the data, using the mechanism 
described above. 

This optimal balance between the exponential term and the denominator in Equation 5.3.2-15, 
which leads to the objective estimate of the smoothing parameter, arises frequently in statistics. 
Perhaps the best known example is the calculation of the standard deviation of normally 
distributed data using the method of maximum likelihood. 

EPRI-SOG (1986) used a similar formulation for the penalty terms, except that the cosine term is 
not included, the average of neighboring cells includes diagonal cells that share a vertex with the 
cell under consideration, and the smoothing parameters are assessed by the expert teams on the 
basis of their evaluations, aided by statistical tests. The presence of the cosine term is justified on 
physical arguments (see above); the omission of the diagonal terms makes the definition 
consistent with the standard finite-difference definition of the Laplacian operator.  

Following EPRI-SOG (1986), this project introduces an additional penalty term, in the form of a 
prior distribution for j� . The product of the prior distributions for all cells in the source zone 
takes the form 
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It may possible to determine prior�  and ��  objectively, but this was not done in this project. 
Instead, prior�  was specified as the value of �  obtained for the entire study region (see regional 
b-values obtained in Section 3.5), and ��  was selected on the basis of the EPRI-SOG (1986) 
experience and sensitivity runs. 

There is a subtle difference between Equations 5.3.2-15 and 5.3.2-17. The former favors 
solutions with spatially uniform � , regardless of the value of � , while the latter promotes 
values of �  near prior� .  

The complete penalized-likelihood, which may also be viewed as a posterior distribution, is 
constructed as the product of the joint likelihood for all the cells in the source zone (Equation 
5.3.2-13), the smoothness penalty terms (Equation 5.3.2-15 and its counterpart for )ln(( ), and 
the prior distribution of �  (Equation 5.3.2-17). We write this quantity as 

 )(');();()()( �����,X ���(( �� fffp --	 �  (5.3.2-18)

where 

 � ��( �� --	 ,,,��X  (5.3.2-19)

is the complete vector of parameters and hyperparameters. It will be called the state vector in the 
section that follows. 

Equation 5.3.2-18 cannot be solved analytically for the penalized maximum-likelihood estimates 
of the parameters. Furthermore, we need more than point estimates of the recurrence parameters. 
Modern PSHA requires an assessment of the epistemic uncertainty associated with these 
estimates—including correlations between the recurrence parameters of cells in the same 
geographical region, which may jointly affect the hazard at one site. Therefore, this project needs 
to characterize the entire multidimensional joint distribution of X (this distribution is given by 
Equation 5.3.2-18 times a normalizing constant). An additional, practical requirement is that one 
must represent the epistemic uncertainty in a computationally efficient manner. This can be 
accomplished by means of a small number of alternative “maps” of the recurrence parameters. 
Sections 5.3.2.1.2 and 5.3.2.1.3 present an approach to fulfill this need.  
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5.3.2.1.2 Modeling the Joint Distribution of Recurrence Parameters  

The approach used to generate alternative maps of the recurrence parameters uses a technique 
known as Markov Chain Monte Carlo (MCMC), in particular, the Metropolis algorithm 
(Metropolis et al., 1953). MCMC is frequently used to generate multiple realizations from a 
complex multi-dimensional probability distribution by constructing a Markov chain that has this 
distribution as its limiting or stationary distribution. In this case, the distribution of interest is 
given by Equation 5.3.2-18 (times a constant). This distribution represents the central tendency 
and epistemic uncertainty of the vector � ��( �� --	 ,,,��X , which contains the recurrence 
parameters for all cells, plus the two hyperparameters. The number of dimensions of X is 

22 �M , where M  is the number of cells in the source zone. 

A Markov chain is a discrete-time1 probabilistic model with states X(1), X(2), X(3), X(4), …., in 
which the conditional probability distribution of the state at time t+1 (denoted X(t+1)), given the 
states at earlier times, depends only on the immediately previous state (X(t)). This conditional 
probability distribution of X(t+1) given X(t) is known as the transition probability. If a Markov 
chain meets certain requirements, it possesses a limiting or stationary distribution, which will be 
reached asymptotically after many realizations, regardless of the initial state. A mechanical 
analogy is a linear damped oscillator under harmonic loading. After a sufficiently long time, the 
oscillator will reach a steady-state amplitude (and, as a consequence, a steady-state probability 
distribution for the instantaneous displacement), regardless of its initial conditions. Further 
details on Markov chains may be found in Parzen (1962). 

MCMC constructs a discrete-time Markov chain with the following properties: (a) the Markov 
chain has a stationary or limiting distribution, and (b) this limiting distribution is equal to the 
joint distribution of interest (i.e., the penalized likelihood function p(X) given by Equation 
5.3.2-18). Thus, one can use this sequence to obtain realizations from that distribution. A number 
of initial realizations are discarded because they are affected by the initial conditions. Then, a 
number of realizations are generated and summary statistics are calculated from them.  

In the Metropolis MCMC algorithm, a new realization X(t+1) is generated from X(t) by the 
following two-step procedure: (1) generate a new candidate state X� by drawing from a trial 
distribution q(X�|X(t)) that depends only on X(t) and is symmetrical (i.e., q(X�|X(t)) = q(X(t)|X�)), 
and (2) accept the new trial state with probability 
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If the new state is accepted (i.e., if a standard uniform random number generator draws a value 
lower than Paccept), X� becomes the new state X(t+1). Otherwise, the new state X(t+1) is equal to X(t). 

                                                           
1 The word “time” is not used in a strict chronological sense here. Instead it is used to represent a sequence of 
discrete realizations of a mathematical process. 
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In this project, the Metropolis algorithm is implemented locally, as follows. For each cell j, trial 
values of )ln( j(  and j�  are drawn from uniform distributions centered at the current values of 
these parameters, the penalized likelihood function is calculated for these trial values, and the 
values are accepted or rejected using Equation 5.3.2-20 and a random-number generator. The 
only portions of the penalized likelihood that are reevaluated each time are the likelihood 
function for cell j, the penalty terms for cell j and for its neighboring cells within the source zone, 
and the prior distribution of j� . After going through all cells, trial values of the hyperparameters 

(�-  and b-�  are drawn in a similar manner, the penalized likelihood is recalculated, and the 
values are accepted or rejected. In this step, only the smoothness-penalty terms for all cells are 
recalculated. This process is repeated a large number of times. 

The widths of the uniform distributions are controlled by the analyst. These widths affect the 
acceptance rate, which in turn affects the numerical efficiency of the algorithm. 
Recommendations as to the optimal acceptance rates vary; a common recommendation is values 
in the range between 20% and 40% (e.g., Ntzoufras, 2009). After discarding some of the initial 
realizations of X(t), one generates a large number of realizations to represent the joint distribution 
of the state vector � ��( �� --	 ,,,��X . The section that follows describes the approach to obtain 
eight equally likely realizations of X (i.e., eight alternative maps to represent the joint 
distribution of (  and �  and the two hyperparameters), including their correlation structure.  

5.3.2.1.3 Development of Alternative Recurrence Maps  

The approach presented below constructs alternative maps of the recurrence parameters (  and 
�  that jointly represent the central tendency and statistical uncertainty in the recurrence 
parameters, including correlations between the recurrence parameters of cells in the same 
geographical region (which may jointly affect the hazard at one site). At the same time, the 
number of alternative recurrence maps must be kept small for the sake of efficiency in the hazard 
calculations. The approach used here is a combination of well known techniques. 

The first step in this formulation is to generate many realizations of the state vector 
� ��( �� --	 ,,,��X  using the MCMC algorithm described above and then use these realizations 

to calculate the mean vector Xm  and the covariance matrix XS  of X. This covariance matrix 
contains information about the marginal variance of (  and �  in each cell, the correlation 
between (  and �  in each cell, as well as the correlation between parameters in neighboring 
cells.  

The second step is to perform an eigenvalue decomposition of the covariance matrix XS . 
Because this matrix is a covariance matrix, it is positive-semi-definite, so that all eigenvalues are 
positive or zero. Let 2

22
2

2
2

1 ,,, �M111 �  be the eigenvalues of XS , ordered from largest to 
smallest, and let 2221 ,,, �M��� �  be the associated eigenvectors.  
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An important property of this eigenvalue decomposition is that of orthogonality, meaning that 
the dot product of r2  and s2  is equal to 1 if sr 	  and 0 if sr 3 . Taking advantage of 

orthogonality, one can show that a random vector X~  constructed using the following 
randomized linear combination of the eigenvalues 
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kk �mX X 4  (5.3.2-21)

where 2221 ,, �M444 �  are independent random variables with mean zero and variances 
2

22
2

2
2

1 ,,, �M111 � , has mean Xm  and covariance matrix XS . This implies that a synthesized 
realization of X~  generated using Equation 5.3.2-21 has the correlation properties of the random 
vector � ��( �� --	 ,,,��X  that we want to simulate. This technique, based on the eigenvalue 
decomposition of the covariance matrix, is used in many disciplines, under a variety of names; 
e.g., Karhunen–Loève expansion, principal component analysis, and empirical orthogonal 
functions (see, for example, Preisendorfer, 1988).  

In many applications of this technique, only a few terms are required in Equation 5.3.2-21 
because the eigenvalues decrease rapidly in size. This is not the case in this application, and it 
may be necessary to use a large number of terms (up to a few hundred) in the summation in order 
to represent 99% of the total variance of X.  

The third step is to generate eight realizations of the 4 ’s and then use these to generate 
realizations of X~  using Equation 5.2.2-21, with each realization representing an alternative 
recurrence map. This is done using a technique known as Latin Hypercube sampling or LHS 
(Iman and Conover, 1980). The technique will be described in the context of Equation 5.3.2-21, 
where we want to generate eight realizations of the random vector � �2221 ,, �	 M444 ��  and we 
want these realizations to provide a good representation of the underlying distributions, despite 
the small number of realizations. We also assume, for the sake of convenience, that the 
components of �  have normal distributions (this assumption and its implications are discussed 
later). The process is as follows: 

1. Divide the sample space of each normally distributed j4  into eight intervals, with each 
interval containing an equal probability of 1/8. These intervals will have unequal lengths. 

2. Within each interval z (z=1, 2, ,,,8), generate a random value jz4  that follows the conditional 
distribution within the interval. The resulting values form a sequence with 

821 jjj 444 ��� � . 

3. For each j, generate an independent random permutation of 821 ,,, jjj 444 � . After this 
permutation, 821 ,,, jjj 444 �  are no longer an increasing sequence. The result is eight random 
realizations of the random vector � �2221 ,, �	 M444 �� . Because the eight values for each j 
were drawn from the eight equal-probability intervals, the distribution of j4  is well 



 
Chapter 5 
SSC Model: Overview and Methodology 

5-36 

approximated by the eight realizations. Because of the random permutations, the correlation 
coefficient between the eight realizations of any two 

1j
4  and 

2j
4  has an expected value of 0 

and is likely to be low. 

4. Generate eight alternative realizations of X~  using the eight permuted �  vectors and Equation 
5.3.2-21.  

5. Convert each realization of X~  (actually, all but its last two elements) into values of (  and b  
for each cell in the source zone, and use these two values to calculate )5(( , the rate of 
earthquakes above magnitude 5. 

The resulting eight alternative maps represent the uncertainty in recurrence parameters that 
results from the limited duration of the catalog. If the smoothing parameters are treated as 
uncertain and estimated objectively from the data, the eight alternative maps also include the 
uncertainty about the appropriate values of the smoothing parameters.  

This approach presented below constructs the alternative realizations of (  and �  as linear 
combinations of normally distributed random quantities. Thus, it produces normally distributed 
quantities. This normal distribution is consistent with the distribution shapes of (  and �  shown 
in Figures 5.3.2-1 and 5.3.2-2, which approach normal shapes as the number of earthquakes 
approaches 10. Although there may be a few earthquakes in each cell, the presence of the penalty 
terms tends to “pool” the data from many adjacent cells, resulting in a larger value of the 
“effective” earthquake count.  

The initial implementation of this approach required that the number of realizations be a power 
of 2 because the first few epsilons were sampled using two-point distributions. This number was 
set to 8 because 4 was considered insufficient and 16 imposed a high computational burden for 
the hazard calculations. In the present Latin Hypercube implementation, the restriction of a 
power of 2 no longer exists, but the choice of eight realizations was retained. Tests indicate that 
eight realizations, together with Latin Hypercube sampling, provide an adequate representation 
of the mean and fractiles of the hazard. 

5.3.2.2 Application of the Model and Specification of Model Parameters 

5.3.2.2.1 Calculations 

Calculations were performed for all the seismotectonic and Mmax-region source zones identified 
in Chapter 4. The catalog had all dependent earthquakes removed; earthquakes associated with 
the RLME sources were also removed from this catalog to avoid double-counting (see 
Chapter 3). 

The MCMC formulation was used to generate a large number of realizations (typically 15 
million), of which roughly the first 25% were discarded because they were affected by the initial 
conditions. The evolution of recurrence parameters at a few points was examined in each run to 
verify that this number was sufficient, in the sense that the system had reached a steady state. In 
some instances, this number had to be increased and sometimes the width of the MCMC trial 
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distribution had to be altered. The cell sizes for all seismotectonic source zones except MidC was 
0.25 degrees in order to have the ability to resolve any sharp gradients in parameters that may 
occur in the more active regions. For reasons of computational efficiency, the cell size for MidC 
and for the Mmax source zones was set to 0.5 degrees. Tests with MidC indicated similar results 
for both cell sizes. 

In addition to the algorithmic inputs described above, one must specify the weights for the 
various magnitude bins, the degree of spatial smoothing (including the option of objective 
smoothing), and the mean value and standard deviation of the prior distribution on b. Section 
5.3.2.1.1 provides details on how these quantities enter the calculations and the rationale for their 
use.  

Table 5.3.2.1 shows the five cases that were initially considered for the weights to the magnitude 
bins. These five alternative sets of weights span a wide range, in order to investigate the effect of 
giving lower weights to the lower-magnitude bins. Case E was introduced later, as an 
intermediate case between Cases C and D, because Case E was considered too extreme. 

Some or the reasons for giving lower weights to the lower magnitude bins were discussed earlier. 
For instance, the magnitude-recurrence law may deviate from exponential, or the magnitude-
conversion models or completeness model may be less reliable for lower magnitudes. In this 
regard, it is useful to remember that only earthquakes with magnitudes greater than 5 (4 if the 
CAV filter is being used) are important for seismic hazard and risk for nuclear facilities. The 
only reason for considering lower magnitudes is that the M > 4 data alone are not sufficient for 
determining both the magnitude-recurrence law and the spatial distribution for earthquakes of 
engineering interest. Because the magnitude weights also affect the degree of smoothing2, one 
must also consider the issue of spatial stationarity; i.e., whether the spatial pattern of past, small, 
earthquakes is representative of the spatial pattern of future, hazard-significant, earthquakes. 
Cases A through E were designed to cover a broad range of alternatives regarding magnitude 
weights.  

Based on calculations performed earlier in the project, only Cases A, B, and E were retained. The 
reasons for dropping Cases C and D were that case C was very similar to Case B and that Case E 
was considered too extreme, relying almost entirely on magnitudes 4.3 and greater, and leading 
to nearly spatially uniform seismicity. The three remaining cases (Cases A, B, and E) were 
examined and compared in terms of their fit to the magnitude-recurrence data and their degree of 
smoothing. Preference for the three cases was nearly equal, except that Case E was given slightly 
more weight because this case is more sensitive to data in the magnitude bins that that control 
seismic hazard. The resulting weights are 0.3, 0.3, and 0.4, for Cases A, B, and E, respectively.  

The mean value for the prior distribution of �  (Equation 5.3.2.17) was calculated separately for 
Cases A, B, and E above, by performing a maximum-likelihood recurrence analysis for the entire 
study region, and assuming constant b. Details of these calculations are contained in Section 3.5 

                                                           
2 When objective smoothing is used, the cases where the lower bins are downweighted result in smoother seismicity. 
This effect will be discussed and explained later in this section. 
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Two values were considered for the strength of the prior distribution of � , which is specified by 
the standard deviation )10ln(/��� 	b . The first value is 0.6 (in units of b), which corresponds 
to a “moderate prior” in the EPRI-SOG (1988) project; we will also refer to this value as a 
moderate prior for b. The second value is 0.3 (in units of b), and we will refer to it as a strong 
prior. We also considered a weak prior (1.2, in units of b) in earlier stages of the project, but this 
value was not considered credible because there is a general consensus in the TI Team that 
spatial variation in b should be mild.  

For all source zones except SLR, the smoothing parameters were determined using the objective 
approach. For each source zone, and for each of the magnitude-bin weights and strengths of the 
prior on b considered, the smoothing parameters (�-  and �� -  were allowed to vary, allowing 
the catalog data themselves to determine their optimal values and associated uncertainty for each 
source zone in an objective manner. Figures 5.3.2-4 through 5.3.2-9 show the values of the 
smoothing parameters and their + one-sigma ranges for magnitude-weight Cases A, B, and E, 
using a moderate prior for b. 

On Figures 5.3.2-4 through 5.3.2-9, the source zones are sorted by size, with the small 
seismotectonic zones on the left side, and the Midcontinent and the Mmax zones on the right-
hand side. The EPRI-SOG equivalent values (adjusted for differences in cell size) are provided 
for the sake of reference; the equivalence is only approximate because of some of the differences 
mentioned earlier between the two formulations of smoothing and because of potential 
limitations in the adjustment for size.  

On Figure 5.3.2-4, the small- and moderate-size seismotectonic zones show a broad variation in 
the objectively determined values of (�- : zones with high seismicity such as Reelfoot Rift show 
higher values (less smoothing), while zones with low seismicity such as AHEX show lower 
values (more smoothing). The large MidC and Mmax zones show similar values as the active 
zones. Relative to the EPRI-SOG values, the objectively determined values indicate less 
smoothing, except for the seismotectonic zones with low seismicity. Comparing Figures 5.3.2-6 
and 5.3.2-8, to Figure 5.3.2-4 we note that the objective approach assigns significantly more 
smoothing to the cases where the lower-magnitude bins are downweighted. The reason for this is 
that the effective number of earthquakes in a source-zone is diminished when the low-magnitude 
data are down-weighted. The objective approach compensates for this smaller sample size by 
imposing more smoothing, thereby reducing spatial resolution.  

On Figure 5.3.2-5, there is zone-to-zone variation in the objectively determined values of b-� , 
there is a trend with size, but no trend with seismicity. It is important to notice that there is 
significantly more smoothing on b than for EPRI-SOG, indicating that the data favor a very mild 
geographical variation in b. Comparing Figure 5.3.2-7 and 5.3.2-9 to Figure 5.3.2-3, we note that 
the objective approach assigns slightly higher smoothing on b for the cases in which the low-
magnitude bins are downweighted.  

Figures 5.3.2-10 and 5.3.2-11 illustrate the effect of smoothing and seismic activity by 
comparing the results for the extended-crust source zones ECC-AM and ECC-GC, for case-A 
magnitude weights and moderate prior on b. ECC-AM has higher activity and the objective 
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procedure assigns to it low smoothing for rates (high (�- ). In contrast, ECC-GC has low activity 
and the objective procedure assigns to it approximately 10 times more smoothing for rates. Note 
that the scales for activity rate are different in the two figures. 

It is also useful to compare the above figures to Figures 5.3.2-12 through 5.3.2-15, which show 
results for the same source zones, for Case B and E magnitude weights and moderate prior on b. 
Because the effective number of earthquakes is smaller, the objective procedure compensates by 
increasing the smoothing on rate. The effect is much more pronounced in ECC-AM.  

Figures 5.3.2-10 through 5.3.2-15 show that, by considering three alternative sets of magnitude 
weights together with an objective approach for smoothing, we are effectively sampling a broad 
range of smoothing parameters for rate. To further appreciate this, it is useful to examine the 
mean recurrence maps for Cases A, B, and E that will be presented in Sections 6.4 and 7.5.  

For the SLR source zone, the approach described above led to underestimation of the observed 
rates for magnitude 4.3 and higher. To obtain an adequate fit it was necessary to remove the prior 
distribution on �  and to constrain the smoothing on � . This constraint was introduced by 
specifying a prior distribution of �� -  with a median of 0.01 and a COV of 30%, which appears 
as an additional multiplicative term in Equation 5.3.2-18. The need for this different treatment is 
that SLR appears to have a b-value that is substantially lower than that of the region as a whole, 
and that portions of SLR (particularly in the Charlevoix area) appear have even lower b-values. 
This is consistent with the experience of Petersen et al. (2008), who assign a lower b-value to 
Charlevoix. Figures 5.3.2-10 through 5.3.2-15, and all other figures shown later in this section 
and in Chapter 7 reflect this modified approach for the treatment of the SLR source zone.  

5.3.2.2.2 Sensitivity to Magnitude Weights, Strength of Prior, and Alternative Maps 

The six sets of recurrence maps obtained above were used to perform sensitivity calculations in 
order to quantify and illustrate the effect of the strength of the prior on b and magnitude weights, 
and alternative recurrence maps. Calculations were performed for the host zones under the most 
likely source-zone configuration. These calculations were also performed at other demonstration 
sites, but only representative results will be shown here. 

Figures 5.3.2-16 and 5.3.2-17 show the sensitivity to the strength of the prior on b, for the 
Manchester and Topeka sites. These results show essentially no effect on hazard, a result that 
was observed at other demonstration sites and for both PGA and 1 Hz SA. As a consequence of 
these comparisons, the strong prior on b is deemed unnecessary and is eliminated from further 
consideration.  

Figures 5.3.2-18 and 5.3.2-19 show the sensitivity to magnitude weights for the same two sites. 
These results indicate a moderate effect on hazard, particularly in areas of low seismicity. 
Finally, Figures 5.3.2-20 and 5.3.2-21 show the effect of the eight alternative recurrence maps on 
the hazard at the same two sites, for Case B magnitude weights. In both cases, the effect is 
important.  
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Based on the above comparisons, only the moderate prior on b will be considered (except for 
SLR, where no prior is used), and the logic-tree branches associated with magnitude weights and 
the eight alternative realizations will be retained. 

5.3.2.2.3 Resulting Maps 

Figure 5.3.2-22 shows the map of mean recurrence parameters for the most-likely source-zone 
map in the logic tree. Figure 5.3.2-23 shows the associated uncertainties, in the form of COV of 
the rate and standard deviation of the b-value. Figures 5.3.2-24 and 5.3.2-25 show two 
realizations of the equally likely recurrence maps. Although the last two maps show areas of no 
activity (i.e., white areas), it is important to note that no region has a mean rate of zero (i.e., these 
white areas “move” from one map to another), and that these white areas almost always occur in 
areas of no seismicity. Note also that the areas of high activity change little between the mean 
map and the two realizations, indicating that the uncertainty in rate (in the form of the COV) is 
low in regions with abundant data. 

Maps of mean recurrence parameters for all source-zone configurations are shown in Sections 
6.4 (for Mmax zones) and 7.5 (for seismotectonic zones). All realizations of the alternative maps 
are shown in Appendix J.  

5.3.2.3 Exploration of Model Results in Parameter Space  

This section explores the recurrence parameters obtained in the previous section by examining 
and discussing the results obtained at a few specific locations and comparing the recurrence 
parameters to the catalog data. The purpose of these comparisons is to demonstrate consistency 
with the data under a variety of conditions and to gain insights into the behavior of the model 
developed here. These comparisons will focus on the higher-weighted branches of the master 
logic tree (namely, the seismotectonic zonation with the narrow interpretation of PEZ and Rough 
Creek graben in the Midcontinent). Figure 5.3.2-26 shows the local areas considered in these 
comparisons. 

5.3.2.3.1 Regions of High Activity  

The first region to consider is East Tennessee, which is represented by the same polygon used by 
Petersen et al. (2008; see Figure 5.3.2-26). The purpose of this comparison is to demonstrate that 
the penalized-likelihood formulation does not cause unwarranted dilution of highly localized 
seismicity.  

Figures 5.3.2-27 through 5.3.2-29 compare the observed seismicity within the polygon to the 
expected counts within the same polygon, as calculated from the recurrence maps source zone 
PEZ-N, which is the host zone for this polygon. For each recurrence map, the expected counts 
are calculated by (1) calculating the expected rate for each magnitude bin using the values of (  
and �  for the cells covered by the polygon, taking into account that some cells are only partially 
contained within the polygon and accounting for maxM (recall Equations 5.3.2-11 and 5.3.2-12), 
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5.3.2.3.2 Nemaha Ridge Area  
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5.3.2.3.3 Regions of Low Activity  
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project. In the end, only the penalized-likelihood approach was retained in the logic tree. The 
rationale for this decision is provided below. 

The first consideration is the specification of kernel size. In most applications of the kernel 
method for PSHA applications (e.g., Petersen et al., 2008), the kernel size is fixed spatially and is 
assessed subjectively, although methods exist for the objective selection of kernel size (e.g., 
Silverman, 1986). The adaptive kernel approach of Stock and Smith (2002) is partially objective. 
It begins with an arbitrary kernel size, and then it applies a location-dependent adjustment that 
depends on the density of data. This approach can be made fully objective, as illustrated below. 
In contrast to the approach used in most previous PSHA applications, the penalized-likelihood 
approach employed in this project is objective, in the sense that it determines the optimal degree 
of smoothing for each source zone (recall Figures 5.3.2-4 through 5.3.2-9), finding the best 
tradeoff between statistical precision and spatial resolution. This consideration of objectivity is 
not as important as those that follow, however. Although objective approaches are desirable, 
there are situations in PSHA where informed judgment is required because the data and 
statistical models are not sufficient. 

The second consideration is adaptability. Fixed kernel approaches cannot provide higher spatial 
resolution where data are abundant and lower resolution where data are sparse. The adaptive 
kernel approach provides adaptability by performing an initial calculation of rate and then 
adjusting the kernel size for each location based on the result of this calculation. The penalized-
likelihood approach provides adaptability because the likelihood function is narrower where data 
are abundant and broader where data are sparse (recall Figures 5.3.2-1 and 5.3.2-2). As a result, 
the relative effect of the penalty terms (which tends to reduce roughness in the recurrence 
parameters) is weaker where data are abundant and stronger where data are sparse. The 
comparisons shown earlier for East Tennessee demonstrate the adaptability of the penalized-
likelihood approach. 

The third consideration is that of geographical variation of b. The kernel approaches (both fixed 
and adaptive), as they have been implemented so far for PSHA, do not allow for geographical 
variation in b. In contrast, the penalized-likelihood approach allows for geographical variation in 
b. Furthermore, smoothing on rate and on b is controlled by separate smoothing parameters, 
allowing for more variation in rate and less variation in b, as the data and the technical 
community’s intuition suggest. This ability to allow variation in b is important for large source 
zones thousands of kilometers across and encompassing different tectonic settings, such as those 
in the Mmax branches of the master logic tree. For these large source zones, some geographical 
variation in b should not be precluded a priori.  

The fourth consideration is the quantification of epistemic uncertainty. The two kernel 
approaches, as they have been implemented so far for PSHA, provide a simplistic representation 
of epistemic uncertainty in rate and b. This representation essentially treats the source zone as 
having constant rate and b for the purposes of calculating uncertainty, and then assigns the 
resulting COV in rate and standard deviation in b to the entire source zone. This approach 
underestimates the true uncertainty. It is possible to obtain more realistic estimates of the 
uncertainty by using bootstrapping (i.e., fitting the kernel model to multiple synthetic catalogs), 
but the number of alternative maps required to obtain a stable estimate of the uncertainty in 



 
Chapter 5 
SSC Model: Overview and Methodology 

5-44 

hazard is likely to be large. The penalized-likelihood approach combined with MCMC provides a 
realistic representation of uncertainty in the hazard because it samples the entire penalized-
likelihood function for the cells, thereby providing an estimate of the uncertainty in both rate and 
b for each cell, and the associated correlations. In particular, this uncertainty, as measured by the 
COV, is higher in regions of low activity than in regions of high activity (again, recall Figures 
5.3.2-1 and 5.3.2-2). In addition, the penalized-likelihood approach also incorporates the 
epistemic uncertainty in the smoothing parameters, as represented by the error bars on Figures 
5.3.2-4 through 5.3.2-9). Considering multiple kernel sizes in the logic tree (e.g., Petersen et al., 
2008) also captures this uncertainty, but in a subjective manner. Furthermore, the penalized-
likelihood approach combined with MCMC and with the eigenvalue-based sampling scheme 
presented here provides an efficient representation of epistemic uncertainty (including 
correlations between cells) by means of eight alternative maps. 

A fifth consideration is the rates in regions of very low seismicity. The fixed kernel approach, 
and to a lesser extent the adaptive kernel approach, yield very low estimates in these regions. 
This problem may be resolved by the introduction of a somewhat artificial floor level, or by 
using a different kernel shape. The penalized-likelihood approach, on the other hand, provides a 
natural floor that is consistent with the data (or lack thereof) in these regions. This floor is based 
on the understanding that the observation of zero earthquakes during a certain time interval does 
not necessarily imply a rate of zero, but it does imply that the rate is unlikely to be moderate or 
high.  

In relation to these regions of low seismicity, there may be valid economical and structural-
engineering reasons for imposing minimum design values in building codes—and these values 
may exceed the hazard computed from the natural or artificial floor values discussed here. These 
considerations are the responsibility of code-writing committees and should be kept separate 
from the process of estimating recurrence parameters and computing seismic hazard. 

A sixth consideration is that the choice between penalized likelihood and kernel smoothing is a 
choice between statistical tools, not a choice between different conceptual models regarding the 
spatial distribution of future seismicity. Both approaches implement the same conceptual model, 
but apply different statistical tools—each with its own strengths and weaknesses, as discussed 
above. 

To illustrate this last point, it is useful to compare the result from the penalized-likelihood and 
kernel-smoothing methods for selected source zones (and magnitude-weight Case A), using the 
same catalog and completeness model. Figure 5.3.2-42 shows the recurrence parameters 
calculated for three of the seismotectonic zones, spanning a broad range of source-zone size and 
rate density). These results were obtained using an initial kernel size calculated by cross-
validation (Silverman, 1986), and then applying an adaptive-kernel (Stock and Smith, 2002). 
This approach is an objective and adaptive implementation of the Gaussian kernel method. 
Comparison of the rates on Figure 5.3.2-42 to the corresponding portions of Figure 5.3.2-22 
shows a good agreement in most regions, particularly in regions of high activity such as portions 
of NAP and regions of moderately low activity such as portions of ECC-AM. The main 
difference is in the areas of very low activity (e.g., central Texas, northern North Dakota, 
offshore areas in the northeast of the study region), where the kernel approach predicts 
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essentially zero rates but the penalized-likelihood approach predicts low (but nonzero) rates. 
Another fundamental difference is that the kernel approach, as currently implemented, does not 
produce spatially variable estimates of uncertainty such as those shown on Figure 5.3.2-23.  

All these considerations led the project TI Team to the decision to retain only the penalized-
likelihood approach (together with MCMC and eigenvalue-based sampling) for the purpose of 
calculating recurrence parameters and their uncertainty. 

5.3.2.5 Comparison to EPRI-SOG Approach 

The penalized-likelihood approach used in this project has a number of elements in common 
with the EPRI-SOG (1988) methodology, but there are also substantial differences in 
implementation. This section summarizes and discusses the common elements and the 
differences in the calculation of recurrence parameters between this project and the EPRI-SOG 
project. 

The basic formulation of the problem is the same for this project and the EPRI-SOG project. 
Both projects divide a source zone into rectangular cells, (using partial cells at the edges to honor 
the geometry of the source zone), both projects formulate the likelihood function for (  and �  in 
each cell using magnitude bins, both projects introduce penalty functions (in terms of ]ln[(  and 
� ) that increase continuity between cells, and both projects introduce a prior distribution for � . 

There are some differences in the way the penalty terms are computed. In particular, this project 
uses the standard form of the finite-difference Laplacian operator, using a slight adjustment to 
correct for the effect of latitude on the East-West size of the finite-difference grid. In contrast, 
the EPRI-SOG project uses the difference between a cell and the average of all its neighbors 
(which is not too different from the average of the Lapacians computed along the longitude-
latitude grid and along a grid rotated 45 degrees from it, without correcting in either case for 
difference in the size of the finite-difference grid). The effect of these differences is believed to 
be small, and the approach used in this project is preferable because it is isotropic with respect to 
distances in kilometers. There are also differences in parameterization (i.e., this project uses 
standard deviations (� -  and �� - , while the EPRI-SOG project uses quantities that multiply the 
squared difference between a cell and its neighbors), but these differences are of no consequence. 

The main difference between this project and the EPRI-SOG project is in the treatment of 
epistemic uncertainty. This project captures epistemic uncertainty by working with the full 
penalized likelihood function, which contains all information about the “center, body, and range” 
of the distribution of recurrence parameters, as well as information about the correlation between 
recurrence parameters in nearby cells. This penalized likelihood function is sampled using 
Markov Chain Monte Carlo (MCMC), which generates many realizations of the recurrence 
parameters. These realizations are then used to construct eight representative realizations by 
computing the covariance matrix of the recurrence parameters, and then using a Karhunen–
Loève expansion of this covariance matrix, together with Latin Hypercubes to generate a set of 
eight realizations that represent the mean and epistemic uncertainty in recurrence parameters. In 
contrast, the EPRI-SOG methodology works only with the maximum penalized likelihood 
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estimates of the recurrence parameters. The EPRI-SOG study implemented a “bootstraping” 
procedure in its software (i.e., generating multiple synthetic catalogs and performing the 
maximum penalized likelihood calculations for each catalog) to quantify uncertainty, but this 
procedure was never used by the EPRI-SOG (1988) project in production calculations that went 
all the way to hazard (and it is believed to be impossible in practice, due to the number of 
alternative recurrence maps required).  

Another difference relates to the smoothing parameters (� -  and �� - . This project calculated 
optimal values of these parameters using an objective approach, while the EPRI-SOG project 
specified multiple values of the equivalent smoothing parameters using expert opinion (aided by 
statistical diagnostics). This project also treated (� -  and �� -  as free hyperparameters in the 
MCMC, thereby capturing their epistemic uncertainty and the effect of that uncertainty on the 
uncertainty in �  and � . 

There is also a small difference in the treatment of magnitude uncertainty in the catalog. This 
project counts earthquakes by using “event factors” different from unity, as discussed earlier. In 
contrast, the EPRI-SOG project uses a uniform magnitude M* different from the best-estimate 
magnitude. Analysis and numerical tests in Chapter 3 indicates that the two approaches are 
equivalent in principle, but the use of event factors is preferable because it avoids edge effects at 
the lower magnitudes. 

An area in common is the calculation of completeness times. Prior to performing recurrence 
calculations for each team, source zone, and smoothing option, the EPRI-SOG (1988) project 
performed a coupled recurrence and completeness analysis, using a zoneless penalized 
maximum-likelihood formulation for recurrence, together with certain assumptions regarding 
completeness (e.g., the detection probability does not decrease with time or with magnitude). 
This project followed the same approach, using the same EPRI-SOG formulation and software, 
but using the new catalog and an updated map of the completeness region. These calculations are 
documented in Section 3.5.  

5.3.2.6 Assessment of the Lombardi Study 

In a study of the 1990–2001 M > 1.9 Southern California earthquakes, Lombardi (2003) 
observes that the catalog of all events (i.e., main shocks and aftershocks combined) follows an 
exponential magnitude distribution, but the catalog of main shocks deviate from exponential, 
with flattening at low magnitudes. Lombardi then proposes the following model: (a) the 
magnitude distribution for the population of all events is exponential, and (b) the magnitude 
distribution of main events may be constructed as the distribution of the maximum of N 
independent identically distributed (iid) exponential magnitudes, where N is the number of 
events in a cluster (as determined by the declustering algorithm). This model predicts a main-
shock magnitude-recurrence curve that deviates from exponential in the M 1.9–2.5 range, and 
this deviation is observed in the data. 
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One physical problem with this model is the assumption of iid magnitudes within a cluster. One 
would expect that the same physical factors that introduce tight spatial and temporal clustering of 
earthquakes would also introduce correlation in their magnitudes.  

There are also a number of alternative explanations for the observed deviation from 
exponentially distributed main shocks. One possible explanation is that the 1900–2001 Southern 
California catalog may not be complete down to M 1.9. In fact, Felzer (2008) finds that the 
lowest complete magnitudes for Southern California during the period 1993–1997 are in the M 
2.7–3.0 range and that completeness down to magnitudes near 2.0 was only achieved during the 
period 2000–2007. Another possible explanation is edge effects associated with incomplete 
clusters that include some aftershocks with M < 1.9 and a main event with M > 1.9 (and for 
which N has been underestimated).  

Even if the observed deviation from exponentiality were real and not an artifact of 
incompleteness or edge effects, there are a number of reasons why it would not have large 
practical implications for this project. The reason for this is that this deviation is localized, 
extending only over the lowest 0.3- to 0.5-magnitude units. This project (and, to a lesser degree, 
EPRI-SOG) use alternative sets of magnitude weights to allow for deviations from exponentiality 
and other problems that may arise with magnitudes near the cutoff. Recall that magnitude-weight 
Cases B and E (which, together, carry 70% of the total probability in the logic tree) give 10% 
and 0% weight to the first magnitude bin (see Table 5.3.2-1). In addition, the formulation of the 
likelihood function in terms of magnitude bins does not work with the local slope of the 
magnitude-recurrence data, reducing the effect of any localized deviations from exponentiality. 
Finally, the completeness analysis for magnitude-weight Cases A and B would likely 
compensate for any deviation from exponentiality by altering the completeness times.  

In summary, even if the deviations from main shock exponentiality postulated by Lombardi 
(2003) were real, they would have no effect on the b-values computed in this project.  

5.3.3 Estimation of Recurrence for RLME Sources 

The earthquake recurrence models for the RLME sources are somewhat simpler than those 
described in Section 5.3.2 in that the magnitude range for individual RLMEs is relatively narrow 
and their spatial distribution is limited geographically such that spatial variability is not an issue. 
(Note that for simplicity in this section and later in the report, the term RLME is used to refer to 
the actual past earthquakes and the forecast future occurrences; the term RLME source is used to 
refer to the seismic source used to model the spatial and temporal distribution of the RLMEs.) 
This limits the problem to one of estimating the occurrence rate in time of a point process. The 
data that is used to assess the occurrence rates are derived primarily from paleoseismic studies 
and consist of two types. In many cases, the data provide estimated ages of the paleoearthquakes 
such that the times between earthquakes can be estimated. In other cases, the data provide an 
estimate of the number of earthquakes that have occurred post the age of a particular 
stratigraphic horizon. These data can be easily used to derive estimates of the RLME occurrence 
rates and their uncertainty. 
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The estimation of the RLME occurrence rates is dependent on the probability model assumed for 
the temporal occurrence of these earthquakes. The standard model applied in most PSHA studies 
and the one adopted for most RLME sources in this study is the Poisson model in which the 
probability of occurrence of an RLME in a specified time period is completely characterized by a 
single parameter, �, the rate of RLME occurrence. The approaches used to assess � and its 
uncertainty are described in Section 5.3.3.1. The principal features of the Poisson process are that 
it is “memoryless”—the probability of occurrence in the next time interval is independent of 
when the most recent earthquake occurred, and the time between earthquakes is exponentially 
distributed with a standard deviation equal to the mean time between earthquakes. 

For two RLME sources, the data are sufficient to suggest that the occurrence of RLMEs is more 
periodic in nature (the standard deviation is less than the mean time between earthquakes). For 
these RLME sources a simple renewal model can also be used to assess the probability of 
earthquake occurrence. This model takes into account the time that has elapsed since the most 
recent RLME occurrence in making an estimate of the probability of occurrence in the future. 
The probability of occurrence for renewal models is time-dependent in that the probability of 
occurrence in the next time interval is dependent upon the elapsed time since the most recent 
earthquake. The approaches used to assess the RLME occurrence probabilities for a renewal 
model are presented in Section 5.3.3.2. 

5.3.3.1 Estimation of Occurrence Rates for the Poisson Model 

The estimation of the uncertainty distribution for the rate parameter � of a Poisson process uses 
the following general framework: 

' Define a likelihood function that represents the probability of seeing the observed sample of 
data given a specified rate parameter �. 

' Compute the likelihood values for a full range of the rate parameter �. 

' Normalize these likelihood values to create a probability distribution for �. 

' Incorporate uncertainty in the input data by repeating the process for the weighted alternative 
data sets and computing a weighted combination of the resulting probability distributions 
for �. 

' Represent the resulting probability distribution by a discrete approximation for 
implementation in hazard analysis. 

The likelihood functions used to implement this process depend upon the type of paleoseismic 
data available. The recurrence data fall into two general categories. In the first, the data consist 
of an estimate of the number of earthquakes that have occurred after the deposit of a datable 
stratigraphic horizon, but estimates of the actual ages of the individual earthquakes are not 
available. These type of data are analogous to the assessments made for historical seismicity 
where the data consist of the number of earthquakes that have occurred within the period of 
catalog completeness. The second type of paleoseismic data are estimates of the actual ages of 
individual earthquakes. If these data are available, they provide estimates of the intervals 
between individual earthquakes that can be used to assess the average recurrence interval of 
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RLMEs. The following subsections describe the mathematical formulation used to assess 
earthquake recurrence rates from these two general types of paleoseismic data. 

5.3.3.1.1  Earthquake Count in a Time Interval 

The data available in this case is an estimate of the number of earthquakes, N, that have occurred 
in a known time interval T. For a Poisson model, the probability of observing N events in time 
interval T is given by  
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This leads to the likelihood function for a rate parameter of �i given the observed data (N,T):  
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Figure 5.3.3-1 shows the relative likelihood based probability distribution developed using 
Equation 5.3.3-1 for the case where N equals two earthquakes and T equals 2,000 years. The 
resulting normalized uncertainty distribution for � is in fact a gamma distribution with a mean 
value of (N+1)/T (e.g., Benjamin and Cornell, 1970). The mean differs from the maximum 
likelihood estimate of �, which is N/T due to the skewness of the normalized likelihood 
distribution. In the case where the observed count is zero, the mean estimate of � from the 
normalized likelihood function would be 1/T. This is analogous to the “natural floor” in the 
seismicity-based estimates of earthquake recurrence rates discussed in Section 5.3.2.1.1. 

5.3.3.1.2  Earthquake Recurrence Intervals 

The data available in this case are estimates of the occurrence times of a sequence of N+1 
earthquakes obtained from dating of paleoseismic features or known occurrence times from the 
historical record. The estimated dates for the N+1 earthquakes provide N values of the times 
between earthquakes, ti, plus the open interval since the most recent RLME, t0. The Poisson 
process produces an exponential distribution for the time between occurrences:  
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This leads to the likelihood function for a rate parameter of �i given the observed data  
(ti, i = 1, N, t0):  
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The form of the likelihood function indicates that specification of the dates for the intermediate 

events is not needed as the term 0
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in the sequence. The likelihood function given by Equation 5.3.3-4 is equivalent in form to that 
given by Equation 5.3.3-2 and leads to the same gamma-shaped uncertainty distribution for � 

with mean �
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The maximum likelihood estimate of � from Equation 5.3.3-4 is N/ �
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a common practice of using the inverse of the average of the recurrence intervals due to the 
inclusion of the length of the open interval t0 in the denominator. However, neglecting the open 
interval is ignoring information. The use of Equation 5.3.3-4 is considered more appropriate 
because it incorporates of all of the available information. 

5.3.3.1.3  Representation of Continuous Distribution for � by a Discrete Approximation 

The logic tree structure is generally used to represent uncertainty in the inputs to a PSHA. In a 
logic tree, uncertainty distributions are represented by a (small) set of discrete alternatives with 
assigned probability weights. Miller and Rice (1983) provide a set of discrete approximations for 
arbitrary continuous probability distributions. Their five-point approximation was chosen to 
represent the distributions for � developed for the RLME sources. The Miller and Rice (1983) 
five-point discrete approximation is given in Table 5.3.3-1. The first column indicates the 
location of the five discrete values for the variable in terms of their cumulative probability levels 
in the defined continuous distribution. These are illustrated by the five horizontal dashed lines in 
the lower panel of Figure 5.3.3-1. The second column lists the probability weights to be assigned 
to the five discrete values of the variable. The number of decimal points in the probability 
weights given in Miller and Rice (1983) perhaps implies too high a degree of precision. For 
application in the CEUS project, these probability weights are approximated by the values listed 
in the third column. 

Application of the five-point approximation given above to the example shown on Figure 5.3.3-1 
yields a discrete distribution with 00149.0	6  and 000849.0	6� . The values for the 

continuous gamma distribution are 0015.0	6  and 000866.0	6� , indicating that the discrete 
approximation does a good job of capturing the first two moments of the skewed continuous 
parameter distribution. 

5.3.3.1.4  Use of Fault Slip Rates 

In a few cases, the data used to estimate occurrence rates for RLMEs is in the form of fault slip 
rate. In these cases the value of � is obtained by converting the fault slip rate into a moment rate 
and then dividing by the seismic moment of an RLME, i.e.: 

 
)(RLMEM

SA

O

76 	  (5.3.3-5) 



 
Chapter 5 

SSC Model: Overview and Methodology 

5-51 

where S is the fault slip rate, A is the total area of the fault surface, � is crustal rigidity (taken to be 
3×1011 dynes/cm2), and )(RLMEM O is the average seismic moment of an RLME. The fault slip 
rate is computed by dividing the cumulative fault offset, Dcum, by the length of time over which it 
occurred, T: 

 
T

D
S cum	  (5.3.3-6) 

5.3.3.2 Estimation of Occurrence Rates for a Renewal Model 

A renewal model for the occurrence probability of earthquakes is applied when the data suggest 
a more periodic behavior for the occurrence times between earthquakes than implied by the 
Poisson model. There are a variety of distributions that have been used to model the variability in 
the time between events, such as the lognormal, Weibull, and gamma distributions. Recently, 
Matthews et al. (2002) have proposed a model based on the inverse Gaussian distribution for 
inter-arrival times of repeated large ruptures on a fault. This model, termed the Brownian 
Passage Time (BPT) model was used by the Working Group (2003) to assess the probabilities of 
large earthquakes in the San Francisco Bay area. Ellsworth et al. (1999) and Matthews et al. 
(2002) propose that the BPT model is more representative of the physical process of strain 
buildup and release on a seismic source than the other distribution forms that have been used for 
renewal models (e.g., the lognormal). Based on these arguments, the BPT model was used in this 
analysis. 

For the BPT model, the time interval between earthquakes, t, is distributed with probability 
density given by 
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and cumulative probability given by 
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where 7 is the mean inter-arrival time (repeat time), 1 is the aperiodicity coefficient (COV of t), and 
8( ) is the standard normal cumulative probability function. 

Given a sample of N time intervals and one open interval since the most recent earthquake, t0, the 
likelihood function for the observed data set is given by 
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with f(t) and F(t) given by Equation 5.3.3-7 and 5.3.3-8, respectively. Because of the very limited 
size of the data samples for the RLME sources where the model is applied, estimation of the 
aperiodicity coefficient, �, is highly uncertain. Therefore, the value of � is constrained to values 
reported from examination of larger data sets. Based on examination of a number of data sets, the 
Working Group (2003) developed an uncertainty distribution for the aperiodicity coefficient for the 
BTP model consisting of three weighted values for � of 0.3 (weight 0.2), 0.5 (weight 0.5), and 0.7 
(weight 0.3). The Working Group (2003) weighted distribution was adopted to constrain the value 
of �. 

The process described in Section 5.3.3.1 was used to develop a likelihood-based distribution for 7 
given a specified value of 1. A broad range of values for 7 were input into Equation 5.3.3-9 to 
compute likelihood values. These likelihoods were then normalized to form a probability 
distribution for 7 for each of the three values of 1. This distribution was then represented by the 
discrete five-point approximation from Miller and Rice (1983) described above. 

For the renewal recurrence model, the probability of an earthquake in the next time interval -t is 
given be the expression: 
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The basic PSHA formulation used to assess the site hazard assumes that the occurrence of 
individual earthquakes conforms to a Poisson process. In order to combine the hazard from 
earthquakes defined by a renewal process into the total hazard, an equivalent Poisson rate is defined 
such that a Poisson process will give a probability of at least one earthquake in time interval -t that 
is equal to the probability given by Equation 5.3.3-10. The equivalent Poisson rate, 6renewal, is given 
by the expression: 

 � � ttttPrenewalrenewal --���	 /)   to  in timeevent (1ln 006  (5.3.3-11) 

A time period of 60 years was chosen as the time period of interest for application (20-year license 
life plus 40-year plant design life). The time t0 was set at January 1, 2011. The corresponding values 
of 6renewal computed from the five weighted values of 7 were then used as a discrete uncertainty 
distribution for the rate of RLMEs. Distributions are developed for each value of 1, resulting in a 
total of 15 weighted alternative RLME rates. 

5.3.3.3 Incorporating Uncertainty in the Input  

The typical uncertainties encountered in characterizing the occurrence rates for RLME sources 
are uncertainties in the data set (i.e., specification of the number of earthquakes and the time 
span of their occurrence) and uncertainties in the actual ages of individual earthquakes or the age 
of the offset stratigraphic horizon used to define the time span. 

Uncertainties in the appropriate data set are handled by creating a probability distribution for 
occurrence rate for each data set and then including these alternatives in the seismic source 
model logic tree as weighted alternatives. Examples of this are the alternative time periods of 
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complete paleoseismic reporting (e.g., 2,000 vs. 5,500 years) and the alternative number of 
RLME earthquakes that are evident in the data for the Charleston RLME, discussed in Section 
6.1. A number of the other RLME source models also include alternative estimates of the 
number of RLMEs that have occurred in the recent past as discrete alternative models in the 
seismic source model logic tree. 

Uncertainty in the age of individual earthquakes or the age of the offset marker horizon are 
typically expressed as a 90% or 95% confidence interval on the before present (BP) age, or as an 
age range (e.g., 10,000 to 12,000 years for the age of a marker horizon). This type of uncertainty 
is incorporated into the uncertainty distribution for the RLME rate parameter by simulating 
values of the age of the ith RLME or of the total time span T from the expressed uncertainty 
distribution. The resulting values of ti or T are then used to develop a likelihood based 
continuous probability distribution for the rate parameter. The process is then repeated multiple 
times and the resulting probability distributions averaged to produce a composite continuous 
distribution for the rate parameter. This composite distribution is then represented by the five-
point discrete approximation described above. 

For two of the RLME sources the available paleoseismic data consists of multiple samples 
providing constraints on the timing of past RLME occurrences. For the Charleston RLME, two 
types of data are used. One consists of samples whose ages are considered to be contemporary 
with the earthquake occurrence, denoted as CON ages. Each sample has its own age estimate 
with associated uncertainties. A distribution for the age of the associated RLME was developed 
by computing the relative likelihood that a range of possible ages produced the sample of age 
dates, assuming that the uncertainty in each age can be approximated by a normal distribution 
with the specified uncertainty ranges. These relative likelihoods were then normalized to produce 
a probability distribution for the RLME age. Figure 5.3.3-2 shows the resulting distributions for 
the ages of the five most recent Charleston RLMEs preceding the 1886 earthquake, labeled as 
“Con Ages.” 

The second type of sample data for the Charleston RLME is those that provide constraints on the 
event age in terms of representing points in time either before or after each earthquake 
occurrence. This additional age data was used to modify the CON age distributions by simulating 
ages from the CON age distribution and from the distribution for the constraining sample age 
and rejecting those simulations that violate the age constrains. The resulting earthquake age 
distributions are shown on Figure 5.3.3-2 as the “All Ages” distributions. 

These two sets of age distributions were then used to develop uncertainty distributions for the 
RLME occurrence rate. 

5.3.3.4 RLME Magnitude Distribution 

The RLME sources are intended to model the repeated occurrence of large earthquakes of similar 
size. The expected magnitude of the RLME is estimated from various sources of data and its 
uncertainty is expressed by a probability distribution in the RLME source logic tree. In addition, 
it is anticipated that there will be variability in the actual magnitude of each earthquake when it 
occurs, requiring the need for specifying an aleatory uncertainty for earthquake magnitude. For 
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this study, a simple uniform distribution is assumed, which implies maximum uncertainty. The 
width of this distribution is set to be the expected RLME magnitude ± ¼-magnitude units, 
resulting in a range of ½-magnitude units. A ½-magnitude unit range implies a factor of 3 range 
in source dimensions and over a factor of 5 range in seismic moment. The ½-magnitude range 
was chosen as a typical representation of the variability of repeated large earthquakes occurring 
on a single source (e.g., Youngs and Coppersmith, 1985). 

5.4 Assessment of Future Earthquake Characteristics 

The CEUS SSC model has been developed for use in future PSHAs. To make this future use 
possible, the SSC model must be combined with a ground-motion characterization (GMC) 
model. At present, the ground-motion prediction equations (GMPEs) in use for SCRs such as the 
CEUS include limited information regarding the characteristics of future earthquakes. In 
contrast, GMPEs for active tectonic environments often include multiple characteristics, 
including style of faulting as defined by sense of fault slip and distance to the fault rupture. In 
anticipation of the possible future development of GMPEs for the CEUS that will make it 
possible to incorporate similar types of information, a number of characteristics of future 
earthquakes in the CEUS are assessed in this section. In addition to characteristics that might be 
important for ground-motion assessments, there are also assessed characteristics that are 
potentially important to the modeling conducted for hazard analysis. For example, assuming that 
the PSHA models earthquakes as finite fault ruptures, information is then needed about the 
relationship between magnitude of the earthquake and rupture dimensions, length-to-width 
aspect ratios, and the relationship between the rupture and the seismic source zone boundaries.  

The assessment by the TI Team of future earthquake characteristics was carried out in two parts. 
In the first, a set of characteristics believed to be representative of the entire CEUS study region 
was assessed. This set of characteristics is termed “default” because, in the absence of local data 
for a particular region, it would provide a basis for use in the PSHA calculations. The default 
characteristics and their assessed values are given in Table 5.4-1. The second assessment 
involved making estimates of the future earthquake characteristics for the individual seismic 
sources. These assessments were made by the TI Team by evaluating source-specific data. A 
summary of the source-specific assessments is given in Table 5.4-2. A brief description of the 
future earthquake characteristics is given below.  

The assessment of future earthquake characteristics for the entire CEUS study region is given in 
Table 5.4-1. Also included in Table 5.4-1 are representative references to data and interpretations 
that have been evaluated in the assessment of these characteristics. It should be noted that these 
references usually cite local or site-specific studies, and not evaluations across the entire CEUS 
SSC study region, because such studies are not available on a regional scale. In addition, the 
references only provide data for consideration by TI Team members in their assessments of the 
future earthquake characteristics; the assessed values in column 2 of the table are based on the 
assessments by the TI Team of the default characteristics that represent the current state of 
scientific knowledge” for the CEUS in the absence of source-specific information.  

In the characterization of individual seismic sources, if source-specific data suggest a difference 
from the default case, the characteristics were assessed for that particular source. The source-
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specific assessments summarized in Table 5.4-2 are discussed for each RLME source and Mmax 
source in Chapter 6 and for each seismotectonic zone in Chapter 7. The discussions in Chapters 6 
and 7 include a description of the assessments of the future earthquake characteristics, as well as 
the technical bases for the weights applied to the alternatives. As indicated in Table 5.4-2, those 
assessments that are the same as the default assessments are shown as italics; those assessments 
that are different from the default assessments due to source-specific information are shown in 
plain text.  

Subsequent to the finalization of the model for developing the HID and hazard calculations, 
minor revisions to the future earthquake characteristics were made to the ECC-AM and ECC-GC 
sources. The final characteristics are given in Table 5.4-2. These characteristics have little to no 
effect on the hazard, given the ground motion models that were used for the hazard calculations. 
However, future users of the CEUS SSC model should consider the characteristics given in 
Table 5.4-2 to be the final assessments for the CEUS SSC model. 

The Data Evaluation table for the assessment of default characteristics of future earthquakes in 
the CEUS is presented in Appendix Table C-5.4, and the Data Summary table in Appendix Table 
D-5.4. Each of the future earthquake characteristics is described below. 

5.4.1 Tectonic Stress Regime 

Some GMPEs provide different relationships as a function of compressional or extensional 
tectonic stress regimes. A variety of data sets, including the stress data compiled for the project 
by Zoback (2010), indicate the CEUS study region lies within a contemporary tectonic stress 
regime that is compressional. 

5.4.2 Sense of Slip/Style of Faulting 

Sense of slip of future earthquakes, which defines the style of faulting, is assessed based on a 
variety of data sets, including earthquake focal mechanisms, stress indicators, and the 
relationship between stress orientations and the geologic structure. The result of the assessment 
given in Table 5.4-1 is aleatory variability, which reflects the expected relative frequency of 
strike-slip versus reverse faulting averaged across the study region.  

5.4.3 Strike and Dip of Ruptures 

It is assumed that the GMPE for the CEUS will be capable of incorporating information about 
the characteristics of earthquake sources, modeled as finite faults in much the same manner as 
earthquake sources ares modeled in the WUS. Therefore, Table 5.4-1 includes a number of 
assessment results that address the expected geometry of future ruptures and, in some cases, the 
relationship of the geometry to earthquake magnitude. A key attribute of the geometry is the 
strike and dip (i.e., orientation) of the rupture surfaces. Assessment of the strike of future rupture 
surfaces was made using information from earthquake focal mechanisms, the structural grain of 
major fold and fault systems—unless the grain is judged to have no relationship to contemporary 
earthquake properties; and tectonic stress data in regard to the orientations and magnitudes of 
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principal stresses. Assessment of the dip of future rupture surfaces was dependent on style of 
faulting and derived from empirical data related to observed ruptures and evaluations of physical 
properties. 

5.4.4 Seismogenic Crustal Thickness  

From the standpoint of high-frequency energy release and seismic hazard, an important 
consideration is the geometry of the rupture within the seismogenic part of the crust. The 
thickness of the seismogenic crust (also called the seismogenic layer or seismogenic zone) varies 
spatially, but the results of the assessment shown in Table 5.4-1 represent an epistemic 
assessment of the average crustal thickness across the study region. This distribution can be 
modified locally to account for unusually thick or thin seismogenic crust at the scale of an 
individual seismic source. The assessment of seismogenic crustal thickness is based on the focal 
depth distributions of well-studied earthquakes, usually those lying within local or regional 
seismic networks, such that hypocentral depth can be determined with a high degree of 
confidence. However, uncertainties in focal depth across the study region vary considerably as a 
function of available hypocenter information.  

Given a focal depth distribution, physical considerations given by various researchers suggest 
that the base of the seismogenic zone is identified as lying near the base of the observed focal 
depths. For example, Scholz (1998) identifies the 300°C isotherm as corresponding to the onset 
of dislocation creep in quartz, which he interprets to control the seismic/aseismic transition zone 
by Scholz (1998). Tanaka (2004) and Tanaka and Ito (2002) compares high-quality thermal 
measurements and seismicity depth data to examine the conept that temperature is a fundamental 
parameter for determining the thickness of the seismogenic zone. Their gridded heat flow or 
geothermal gradient and D90, the depth above which 90% of earthquakes occur, correlated well 
with each other. The evaluated temperatures for D90 range between 250°C and 450°C. The 
consistency of temperature for D90 over a large depth interval almost all over the Japanese 
Islands leads these researchers to conclude that temperature is the dominant factor governing the 
focal depth in the crust. However, other evaluators have used criteria, such as the 95th percentile 
of the focal depth distribution. Given these alternative interpretations, and the uncertainty in 
focal depth assessments across the the study region, the generic and zone-specific assessments of 
crustal thickness presented in Tables 5.4-1 and 5.4-2 were made. 

As discussed in Chapter 8, uncertainty in crutal thickness is not a significant contributor to 
uncertainty in seismic hazard in the CEUS because the current ground motion prediction 
equations have only limited sensitivity to depth. However, in anticipation of future advances in 
the characterization of ground motions for CEUS earthquakes, additional analysis of focal depth 
data are presented. Given the assumption that the criterion of D90 is the correct interpretation of 
the base of the seismogenic layer, a high-quality focal depth data set was compiled based on 
those earthquakes having the best-resolved focal depths. The calculation of D90 is made for each 
of the seismic source zones. The assessment of seismogenic thickness and its uncertainty is, in 
turn, a function of the number of earthquake focal depths that exist for each source. A 
bootstrapping approach was used that uses the assumption that the random uncertainty in the 
focal depth of any given earthquake is about ±2 km and the uncertainty in the actual thickness is 
a function of the number of number of earthquakes that define D90.  
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Figure 5.4.4-1 shows the spatial distribution of earthquakes in the CEUS SSC Project catalog 
with E[M] magnitudes of 2.2 and greater. Figure 5.4.4-2 shows the spatial distribution of 
earthquakes in the CEUS SSC Project database having the best-resolved focal depths. This 
include smaller earthquakes for which E[M] magnitudes were not computed. In general, the 
spatial distribution of earthquakes with better quality depth determinations is similar to that of 
the full catalog. However, some areas, such as the Gulf Coast region and the upper Great Plains 
have limited coverage. 

Figure 5.5.4-3 shows histograms of focal depth for earthquakes within the Mmax source zones 
and Figure 5.5.4-4 shows histograms of focal depth for earthquakes within the seismotectonic 
source zones. Several of the seimotectonic source zones have limited to very limited data 
(AHEX, ECC-GC, GHEX, and OKA). Assessment of D90 for these sources was therefore based 
on assumed similarity with other sources. As discussed in Section 3.2.4, an attempt was made to 
identify fixed depth earthquakes. Dips in the histograms for a number of source zones at depths 
of 5, 10, and 18 km indicates that for some of the earthquakes flagged fixed depths may not be 
fixed. However, adding synthetic data to representing estimates of the number of missing 
earthquakes did not result in a significant difference in the estimate of D90. 

Bootstrap samples of focal depths were drawn from the observed focal depth distributions for 
each source zone. A normally distributed random depth error with a standard deviation of 2 km 
was added to each focal depth. The bootstrap samples were then used to compute an uncertainty 
distribution for D90. Table 5.4-3 lists the results of the analyses. The uncertainty range for D90 is 
typically ±1 km about the observed value. Three of the source zones (AHEX, GHEX, and OKA 
have too few good quality focal depths to make an assessment and the results for ECC-GC may 
also be too broad due to the limited sample size. 

The results presented in Table 5.4-3 can be used as part of use of the CEUS SSC model in site-
specific applications and to incorporate potential advancements on ground motion modeling.  

5.4.5 Fault Rupture Area 

In the hazard analysis, each event is associated with a moment magnitude from the recurrence 
relationship and, as a result, can be associated with a rupture area that is a function of that 
magnitude. A variety of empirical relationships between magnitude and rupture area have been 
proposed in the literature, most leading to very similar results for crustal earthquakes. Because of 
those similarities, it was judged sufficient to use a single relationship to represent the range of 
estimates. The relationship used (Somerville et al., 2001) was developed specifically for 
application in eastern North America, thus it is deemed to be applicable to the CEUS for this 
assessment. In the future, consideration should be given for updating this assessment with more 
recent relationships such as that given by Leonard (2010). 

5.4.6 Rupture Length-to-Width Aspect Ratio 

Given a rupture area, the shape of the rupture must be defined within the seismogenic crust. 
Based on an evaluation of observed ruptures for moderate-to-large earthquakes, an assessment 
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was made of the length-to-width aspect ratio. For smaller rupture areas, the aspect ratio is 
assessed to be equi-dimensional or one-to-one. For progressively larger rupture areas, the 
downdip width of the rupture surface, which varies depending on dip angle, will eventually 
involve the entire seismogenic crustal thickness. At still larger rupture areas, only rupture length 
will increase, leading to progressively larger aspect ratios. Such a model will result in large 
aspect ratios for large strike-slip earthquakes and somewhat lower aspect ratios for the same-
magnitude reverse earthquakes, which is consistent with empirical observations. For the smaller 
equi-dimensional ruptures, the depth of the rupture surface is related to the focal depth 
distribution, following the approach given in NAGRA (2004, p. 174). That approach uses the 
focal depth distribution as a basis for the relative likelihood of the center pointof ruptures 
occurring at any particular depth. Given the small magnitudes of these earthquakes, the effect of 
this assumption on hazard is small. 

5.4.7 Relationship of Rupture to Source Zone Boundaries 

For a finite-fault SSC model, the locations of future earthquakes are defined by an epicenter and 
an associated rupture, the geometry of which is represented by the assessment results as 
discussed above in Sections 5.4.3 through 5.4.6. The event epicenters lie within the seismic 
source zone of interest, but it is also possible that the associated ruptures may propagate outside 
the source zone, depending on the properties assessed for the source boundary. If the source 
boundary is assessed as “leaky,” then ruptures will be allowed to extend beyond the boundary; if 
they are “strict,” the ruptures will be confined within the boundary. The earthquake epicenter is 
assumed to lie at the midpoint of the rupture length. Therefore, a leaky rupture would entail no 
more than 50% of the rupture length (for the particular case where the epicenter is located at the 
zone boundary). The assessment of whether a boundary is leaky or strict is related to the 
orientation of rupture surfaces and the expected orientation of ruptures in the adjacent seismic 
source zones. Sharp source boundaries defined by distinct changes in expected rupture 
geometries are likely to be strict boundaries. For example, a boundary of a seismic source zone 
that marks the distinct change in orientation of future earthquake ruptures would likely be 
assessed as having a strict boundary so that ruptures from one source with a particular orientation 
are not modeled with that orientation in the adjacent source. In all cases, the lengths of ruptures 
that are assessed to occur within seismic sources are checked to be sure that their rupture 
dimensions would not exceed the dimensions allowed within the source (and rupture across the 
source boundary, as applicable) for the earthquake magnitudes that are assessed. Across the 
region, the general continuity of expected rupture orientations results in the default assessment of 
leaky boundaries for most seismic source zones. 

5.5 Predicted Seismic Moment Rate 

The CEUS SSC seismic source model developed in Chapters 4, 5, and 6 provides an assessment 
of earthquake recurrence rates for the entire CEUS study region. These recurrence rates were 
used to compute the predicted mean seismic moment rate for the study region. The table below 
summarizes these results. Two thirds of the seismic moment rate results from the recurrence of 
New Madrid RLMEs. The remaining contribution is evenly split between the remaining RLME 
sources and the distributed seismicity sources. 
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Predicted Seismic Moment Rate for CEUS SSC Model 

Source 
Seismic Moment Rate 

(dyne-cm/year) 
Distributed Seismicity 3.2×1024 
New Madrid RLME 1.0×1025 
Remaining RLMEs 3.4×1024 

Total 1.7×1025 

 

Johnston et al. (1994) assessed a seismic moment rate for the SCR region of North America both 
including and excluding the New Madrid 1811-1812 earthquake sequence. Their assessment is 
listed in the table below in terms of seismic moment rate per 105 km2. Also listed are the mean 
moment rates predicted using the CEUS SSC model and the area encompassed by the CEUS 
SSC seismic source model of 7.8 × 106 km2. The results are similar excluding the New Madrid 
earthquakes and with a factor of 2 including the New Madrid earthquakes. Johnston et al. (1994) 
used moment magnitudes M 8.1–8.3. The characterization of the New Madrid RLME for the 
CEUS SSC model results in a mean magnitude for these earthquakes in updated magnitude 
assessments for these earthquakes s for these earthquakes are approximately M 7.5. The one-half 
magnitude difference in the moment magnitudes assigned to these earthquakes translates into 
approximatelty a factor of 5 in seismic moment. Thus, the difference in seismic moment rate 
assigned to the New Madrid sequence based on magnitude assessments for the three earthquakes 
easily accounts for differences in the estimated moment rate for the CEUS. Based on these 
comparisons it is concluded that the seismic moment rate predicted by the CEUS SSC model is 
consistent with the values estimated by Johnston et al. (2004). 

Seismic Moment Rates for the SCR Portion of North America 

Comparison Case 

Seismic Moment Rate Density 
(dyne-cm/year/105 km2) 

Johnston et al. (1994) CEUS SSC Model 
Including New Madrid  4.5×1023 2.2×1023 
Excluding New Madrid 1.07×1023 0.8×1023 
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SE01* 1326660 6 EC CZ C F 6.3 65.8

SE02* 4369994 15 EC CZ C NF 7.9 871.7

SE03* 2125357 7 EC CZ C UK 7.3 32.9

SE04 1651160 1 EC CZ E NF 6.2 16.1

SE05 2149008 4 EC CZ U UK 5.2 4

SE06* 4057142 10 EC MZ C F 7.3 63.2

SE07* 5323365 21 EC MZ C NF 7.8 557.2

SE08* 3638444 8 EC MZ C UK 6.5 21.9

SE09 1272700 1 EC MZ E F 6.2 4

SE10* 1279577 4 EC MZ E NF 5.9 13

SE11 1196907 2 EC MZ E UK 5.2 1

SE12 4314292 14 EC MZ U UK 5.6 8

SE13 31132 1 EC PC C F 0 0

SE14 507439 2 EC PC C NF 5.5 8.5

SE15 22629 1 EC PC E UK 6.5 2

SE16 556326 3 EC PC U UK 5.4 1

SE17 82782 1 EC PZ C F 5.5 4.1

SE18 570732 4 EC PZ C NF 6.5 8.2

SE19 27315 1 EC PZ C UK 5.3 3

SE20 1257982 3 EC PZ U UK 6.1 11.3

* Indicates superdomain used to develop prior distribution. 

C—Compressive F—Favorable orientation PC—Precambrian

CZ—Cenozoic MZ—Mesozoic PZ—Paleozoic

E—Extensive NE—Non-extended crust U—Unknown

EC—Extended crust NF—Unfavorable orientation  
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SE13 31132 1 E PC C F 0 0

SE14* 507439 2 E PC C NF 5.5 8.5

SE15 22629 1 E PC E UK 6.5 2

SE16 556326 3 E PC U UK 5.4 1

SE17 82782 1 E PZ C F 5.5 4.1

SE18* 570732 4 E PZ C NF 6.5 8.2

SE19 27315 1 E PZ C UK 5.3 3

SE20 1257982 3 E PZ U UK 6.1 11.3

SN01 33900 1 NE MZ C F 0 0

SN02* 805784 2 NE MZ C NF 6.2 46.5

SN03* 835876 2 NE MZ C UK 6.4 92.6

SN04 599472 3 NE MZ U UK 5 2

SN05* 9759298 16 NE PC C F 6.7 225.2

SN06* 19633024 17 NE PC C NF 7.3 277.8

SN07* 34329412 38 NE PC C UK 6.8 765.6

SN08* 1519341 3 NE PC E F 5.7 22

SN09* 1689145 3 NE PC E NF 6.6 401.2

SN10* 2039146 3 NE PC E UK 5.6 13.4

SN11 9474115 20 NE PC U UK 6.4 37.1

SN12* 2592956 7 NE PZ C F 6.4 294.4

SN13* 1870538 6 NE PZ C NF 6.4 75.9

SN14* 6518060 16 NE PZ C UK 6.8 110.4

SN15 3645521 9 NE PZ U UK 5.7 12.7

* Indicates superdomain used to develop prior distribution. 

C—Compressive F—Favorable orientation PC—Precambrian

CZ—Cenozoic MZ—Mesozoic PZ—Paleozoic

E—Extensive NE—Non-extended crust U—Unknown

EC—Extended crust NF—Unfavorable orientation  
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SD01* 1326660 6 NA CZ C F 6.3 65.8

SD02* 4369994 15 NA CZ C NF 7.9 871.7

SD03* 2125357 7 NA CZ C UK 7.3 32.9

SD04 1651160 1 NA CZ E NF 6.2 16.1

SD05 2149008 4 NA CZ U UK 5.2 4

SD06* 4091042 11 NA MZ C F 7.3 63.2

SD07* 6129149 23 NA MZ C NF 7.8 603.7

SD08* 4474320 10 NA MZ C UK 6.5 114.5

SD09 1272700 1 NA MZ E F 6.2 4

SD10* 1279577 4 NA MZ E NF 5.9 13

SD11 1196907 2 NA MZ E UK 5.2 1

SD12 4913764 17 NA MZ U UK 5.6 10

SD13* 9790430 17 NA PC C F 6.7 225.2

SD14* 20140460 19 NA PC C NF 7.3 286.3

SD15* 34329412 38 NA PC C UK 6.8 765.6

SD16* 1519341 3 NA PC E F 5.7 22

SD17* 1689145 3 NA PC E NF 6.6 401.2

SD18* 2061775 4 NA PC E UK 6.5 15.4

SD19 10030441 23 NA PC U UK 6.4 38.1

SD20* 2675738 8 NA PZ C F 6.4 298.5

SD21* 2441270 10 NA PZ C NF 6.5 84.1

SD22* 6545375 17 NA PZ C UK 6.8 113.4

SD23 4903503 12 NA PZ U UK 6.1 24

* Indicates superdomain used to develop prior distribution. 

C—Compressive F—Favorable orientation PC—Precambrian

CZ—Cenozoic MZ—Mesozoic PZ—Paleozoic

E—Extensive NE—Non-extended crust U—Unknown

EC—Extended crust NF—Unfavorable orientation  
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MESE 232 0.85 7.05 0.75 7.35

NMESE 180 1.02 6.48 0.61 6.70

COMP 248 0.94 6.88 0.64 7.20
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Study Region (paleo eq) 0.84 0

MESE-N 0.44 0.06

MESE-W (paleo eq) 0.83 0

NMESE-N (paleo eq) 0.87 0

NMESE-W 0.27 0.23

AHEX 1 0

ECC-AM 0.45 0.05

ECC-GC 0.78 0

GHEX 0.8 0

GMH 0.81 0

IBEB (paleo eq) 0.72 0

MidC-A 0.26 0.24

MidC-B 0.26 0.24

MidC-C 0.26 0.24

MidC-D 0.26 0.24

NAP 0.58 0

OKA 0.69 0

PEZ-N 0.65 0

PEZ-W 0.49 0.01

RR 0.67 0

RR-RCG 0.43 0.07

SLR 0.48 0.02

Note: “Paleo eq” indicates that the zone uses paleoseismic evidence to constrain 
the size of the largest observed earthquake in that zone. In those cases, the 
Kijko approach is assigned zero weight. 
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0.101 6.1 5.8

0.244 6.3 6.4

0.310 6.6 6.9

0.244 7.0 7.5

0.101 7.8 8.0
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A (wt = 0.3) 1 1 1 1 1 1

B (wt = 0.3) 0.1 1 1 1 1 1

C 0 1 1 1 1 1

D 0 0.1 1 1 1 1

E (wt = 0.4) 0 0.3 1 1 1 1

Note: The cases used in the final calculations and the weights assigned to them are shown in bold. 
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(�����tive Probability Level of 
Continuous Distribution

Assigned Probability 
Weight

Modified Probability 
Weight

0.034893 0.10108 0.101

0.211702 0.24429 0.244

0.5 0.30926 0.310

0.788298 0.24429 0.244

0.965107 0.10108 0.101
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Tectonic Stress Regime Compressional Zoback (2010)

Sense of Slip/Style of Faulting Treat as aleatory (relative 
frequency):

2:1 strike-slip:reverse

Focal mechanisms:
New Madrid (Shumway, 2008; 
Horton et al., 2005)
Eastern Tennessee (Chapman et 
al., 1997)
Central Virginia (Kim and 
Chapman, 2005)
St. Lawrence (S. Mazzotti,
Wksp 2)
Southern Great Lakes (Dineva et 
al., 2004)
Wabash Valley (Kim, 2003)
Pennsylvania (Seeber et al.,
1998)
CEUS (Zoback, 2010; Heidbach 
et al., 2008; van Lanen and 
Mooney, 2007)
Charleston (P. Talwani, Wksp 2)
Zoback (1992)

Strike and Dip of Ruptures Aleatory distribution:
N50W (0.2)
N-S (0.2)
N35E (0.4)
N60E (0.1)
E-W (0.1)

Dip is a function of sense of slip:
Strike-slip (90°–60°) (uniform)
Reverse (30°–60°) (uniform)
Either direction (50:50)

van Lanen and Mooney (2007)
Sibson and Xie (1998)
Zoback (1992)
Marshak and Paulsen (1997)
(NW trends)
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Seismogenic Crustal Thickness Epistemic distribution:
13 km (0.4)
17 km (0.4)
22 km (0.2)

Sibson (1984, 2007)
van Lanen and Mooney (2007) 
for ENA 
Mai et al. (2005)
Atkinson (2004a)
Sykes et al. (2008)
P. Talwani (Wksp 2)

Fault Rupture Area Function of magnitude:
Use Somerville et al. relation 
for ENA

Somerville et al. (2001)

Rupture Length-to-Width Aspect 
Ratio

Function of rupture area:
1:1 for smaller ruptures
With progressively larger 
areas, when rupture width 
equals seismogenic crustal 
thickness, extend only the 
length

Wesnousky (2008)
Toro approach in NAGRA (2004)

Relationship of Rupture to 
Source Zone Boundaries

Epicenter is at center of 
rupture length (map view)
All boundaries are “leaky”;
rupture is allowed to extend 
beyond boundary. (Note: If 
boundary is “strict,” rupture 
cannot extend beyond 
boundary, although epicenter 
can be near boundary)

1. References provide insight into the assessment of characteristics; however, they do not uniquely define them 
for purposes of the CEUS SSC study. Those assessments were made by the TI Team.
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Charlevoix Reverse Uniform 0°–360° Uniform 40°–60° Leaky 25 km (0.8)
30 km (0.2)

Charleston
—Large Strike-slip

NE parallel to 
long axis (0.8)
NW parallel to 
short axis (0.2)

90° Strict
13 km (0.4)
17 km (0.4)
22 km (0.2)

Charleston
—Local Strike-slip NE parallel to 

long axis 90° Strict
13 km (0.4)
17 km (0.4)
22 km (0.2)

Charleston
—Narrow Strike-slip NE parallel to 

long axis 90° Leaky at ends
13 km (0.4)
17 km (0.4)
22 km (0.2)

Cheraw Normal-oblique On fault trace 
(NE)

50° NW (0.6)
65° NW (0.4) Strict

13 km (0.4)
17 km (0.4)
22 km (0.2)

Commerce Strike-slip NE parallel to 
long axis of zone 90° Leaky at ends

13 km (0.4)
15 km (0.4)
17 km (0.2)

ERM-N Strike-slip NE parallel to 
long axis of zone 90° Leaky at ends

13 km (0.4)
15 km (0.4)
17 km (0.2)

ERM-S Strike-slip NE parallel to 
long axis of zone 90° Leaky at ends

13 km (0.4)
15 km (0.4)
17 km (0.2)

Marianna Strike-slip NE 45° (0.5)
NE 45° (0.5) 90° Leaky at ends

13 km (0.4)
15 km (0.4)
17 km (0.2)

Meers—
Fault

Strike-slip (0.5)
Reverse (0.5)

On fault Strike-slip 90°
Reverse 40° SW Strict 15 km (0.5)

20 km (0.5)

Meers—
Random in 
OKA

Reverse 
oblique

Parallel to long 
axis of zone Uniform 40°–90° Strict 15 km (0.5)

20 km (0.5)

NMFS
NMN, NMS: 
Strike-slip
RMT: reverse

On fault NMN, NMS: 90°
RFT: 40° SW Strict

13 km (0.4)
15 km (0.4)
17 km (0.2)
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Wabash 
Valley

2/3 Strike-slip
1/3 Reverse

Strike parallel to 
the long axis of 
the zone (0.8)
N50W (0.1)
N20W (0.1)

2/3 Strike-slip,
90°
1/3 Reverse, 
40°–60°
Strike-slip, 90°
Reverse, 40°

Leaky 17 km (0.7)
22 km (0.3)

���������������5�����

AHEX 2/3 Strike-slip
1/3 Reverse

N50W (0.1)
N-S (0.1)
N25E (0.4)
N60E (0.3)
E-W (0.1)

Strike-slip (90°–
60°) (uniform)
Reverse (30°–
60°) (uniform)

Leaky
8 km (0.5)
15 km (0.5)

ECC-AM 2/3 Strike-slip
1/3 Reverse 

N50W (0.2)
N-S (0.2)
N35E (0.4)
N60E (0.1)
E-W (0.1)

Strike-slip (90°–
60°) (uniform)
Reverse (30°–
60°) (uniform)

Leaky 
13 km (0.6)
17 km (0.3)
22 km (0.1)

ECC-GC 2/3 Strike-slip
1/3 Reverse

Uniform 0° to
360°

Strike-slip (90°–
60°) (uniform)
Reverse (30°–
60°) (uniform)

Leaky
13 km (0.6)
17 km (0.3)
22 km (0.1)

GHEX 2/3 Strike-slip
1/3 Reverse

Uniform 0° to
360°

Strike-slip (90°–
60°) (uniform)
Reverse (30°–
60°) (uniform)

Leaky 8 km (0.5)
15 km (0.5)

GMH 4/5 Reverse
1/5 Strike-slip

N50W (0.4)
N20W (0.4)
E-W (0.2)

Strike-slip (90°–
60°) (uniform)
Reverse (30°–
60°) (uniform)

Leaky 25 km (0.5)
30 km (0.5)

IBEB

SS (0.1)
RO (0.1)
R (0.3)
SS (0.2)
SS (0.3)

N50W (0.1)
N20W (0.1)
N-S (0.3)
E-W (0.2)
N40E (0.3)

90°
70 E (0.5), 70 W 
(0.5)
40E/W 
(0.4);70E/W (0.3)
90°
90°

Strict
13 km (0.4)
17 km (0.4)
22 km (0.2)
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PEZ 2/3 Strike-slip
1/3 Reverse

N50W (0.2)
N-S (0.2)
N35E (0.4)
N60E (0.1)
E-W (0.1)

Strike-slip (90°–
60°) (uniform
Reverse (30°–
60°) (uniform)

Leaky
13 km (0.4)
17 km (0.4)
22 km (0.2)

MidC 2/3 Strike-slip
1/3 Reverse

N50W (0.2)
N-S (0.2)
N35E (0.4)
N60E (0.1)
E-W (0.1)

Strike-slip (90°–
60°) (uniform)
Reverse (30°–
60°) (uniform)

Strict
13 km (0.4)
17 km (0.4)
22 km (0.2)

NAP 1/3 Strike-slip
2/3 Reverse

N50W (0.2)
N-S (0.2)
N35E (0.4)
N60E (0.1)
E-W (0.1)

Strike-slip (90°–
60°) (uniform)
Reverse (30°–
60°) (uniform)

Leaky
13 km (0.4)
17 km (0.4)
22 km (0.2)

OKA Reverse 
Oblique

Parallel to long 
axis of zone Uniform 45°–75° Leaky 15 km (0.5)

20 km (0.5)

RR and 
RR-RCG

SS (0.2)
R (0.35)
SS (0.5)
SS (0.2)
SS (0.2)

N50W (0.2)
N10W(0.35)
E-W (0.05)
N30E (0.2)
N55E (0.2)

90°
70 E/W (0.5), 40 
E/W (0.5)
90°
90°
90°

Strict
13 km (0.4)
15 km (0.4)
17 km (0.2)

SLR 1/3 Strike-slip
2/3 Reverse

N25E (0.2)
N40E (0.2)
N70E (0.2)
N50W (0.15)
N70W (0.15)
N-S (0.05)
E-W (0.05)

Strike-slip (90°–
60°) (uniform
Reverse (30°–
60°) (uniform)

Leaky 25 km (0.5)
30 km (0.5)

Note: Default characteristics are indicated in italics. 
1. Weights reflect aleatory variability; weights are therefore relative frequencies. 
2. Weights reflect epistemic uncertainty; weights are therefore relative credibility that the given thickness is 
correct. 
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5����

��)�0����������%A=�
�#� �

%A=�$����-����2���
'�����%���)��

�#� �

A��)�0����������
%A=�

�#� �

MESE-N 16 17 18

MESE-W 17 18 19

NMESE-N 17 18 19

NMESE-W 15 16 17

AHEX — — —

ECC-AM 11 12 13

ECC-GC 12 16 20

GHEX — — —

GMH 22 23 24

IBEB 18 19 21

MIDC-A 15 16 17

MIDC-B 15 16 17

MIDC-C 15 16 17

MIDC-D 15 16 17

NAP 15 17 20

OKA — — —

PEZ-N 18 19 20

PEZ-W 18 19 20

RR 12 13 14

RR-RCG 12 13 14

SLR 19 20 21

Note: Cells with “—” indicate source zones with too few earthquakes from which to obtain an estimate. 
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Notes: Prior is normal distribution with mean M 6.4 and standard deviation 0.85. Likelihood function is based on two observed 
earthquakes larger than M 4.5, with the largest being 5.3. 
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Notes: Prior is normal distribution with mean M 6.4 and standard deviation 0.85. Likelihood function is based on 10 observed earthquakes 
larger than M 4.5, with the largest being 5.3. 
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Note: Dashed lines show bias correction for a obsm omax  of 5.7 with a sample size of 10	�
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